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Abstract. In this paper, we extend a result of Campanino and Petritis [1]. We study a random walk in
Z? with a random environment. We suppose that the orientations of the horizontal floors are given by a
stationary sequence of random variables (£x)gen. Once the environment fized, the random walk can go
either up or down or with respect to the orientation of the present floor (with the same probability). In
[1], the (€x)kez is a sequence of independent identically distributed random variables. In [2], this result
is extended to some cases of independent orientations choosen with stationary probabilities (not equal to
0 and to 1). In the present paper, we generalize the result of [1] to some cases when () is stationary.
Moreover we give a slight extension of a result of [2].

1 Introduction

We consider a random walk (M, = ()N(n,f/n))n in Z? with a random environment of a specific type. We
suppose that My = (0,0). Let (g )rez be a stationary sequence of centered random variables with values
in {—1;1}. The orientations of the k*" horizontal floor of Z? is given by &. Once the environment fixed,
the random walk (M, = ()N(n,f/n))n will be such that the distribution of M, 41 — M, conditionned to
o(Mg; k=0, ...,n) is uniform on {(0, 1); (0, —1); (€3, ,0}.

In [1], Campanino and Petritis prove the transience of the random walk (M,), when (&)gez is
sequence of independent identically distributed random variables.

In [2], the following situation is envisaged : Let (fi)rez be a stationary sequence of random variables
with values in [0;1] and with expectation equal to % defined on some probability space (M, F,v). Let
us consider the probability space given by (Q; := M x]0; 1[Z, Fy := F @ (B(]0; 1[))®%, vy 1= v ®@ (V) ®%),
where ) is the Lebesgue measure on ]0; 1[. We define (£x 5, Jkez on this space as follows :

ék,fk ((.d, (Zm)mEZ) = 2'1{2k§fk(w)} — 1.

This means that, once a realization of (fi)r given, the horizontal floors are oriented independently; the
k" floor being oriented to the right with probability f;. In [2], Guillotin and Le Ny prove that, if

(k) = (ékjk) , then the corresponding random walk (M, ), is transient under the following condition :
k

1
Ju V-1
Let us notice that the (£)g studied in [2] is stationary. Let us notice that, conversely, if (€x)x is
stationary, then it can be described by the approach of [2] by taking fi := 1{¢,=1} = %(\fk +1). But the
method of [2] cannot be applied to a function f that can be equal to 0 or 1 with a non-null probability.

dv < +00.

In this paper, we are interested in the case when (£ )rez is a stationary sequence of random variables
satisfying some strong decorrelation properties.



We also end this paper with a short discussion about the model envisaged by Guillotin and Le
Ny. We prove that their result remains true if the condition —L__dv < +oco is replaced b
Y P I 7 P Y

vt s dv < oo, for some p > 0.

2 Result

Theorem 1 Let us suppose that :

1. we have :

> V14 p[Eéoé]l < +o0

p20

and 66 ‘= sup N_2 E |E[£k1£k2£k3€k4]| < +o0.
Nzl Ea ko kaka=0, . N—1

2. There exists some C > 0, some (¢p s)p sen and some integer r > 1 such that

V(P 5) €N? pp1s Sps and lim 5% =0
and such that, for all integers ni,ns,ng,ng with 0 < ny < ny < ng < ng, for all real numbers

Qnypyeeny Qny and B, ..., Bn,, we have :

‘Cov (eiZZinl oklk e ki, ﬁkﬁk)

S C (1 + Z |ak| + Z |ﬁk|) Pns—naz,ni—ns-

k=n k=ns

Then the random walk (My)n is transient.

Let us notice that the hypotheses of this theorem are satisfied under the following a-mixing condition :

lim »n° sup sup sup |P(AN B) — P(A)P(B)| = 0.
nIEe p>0m>0 A€o(6-p,. €0) BET(En,  Entm)

Moreover, in [4], we give examples of dynamical systems (M, F,v,T) and of class of functions C such
that :
o If f: M — [0;1] belongs to the class C and if fodl/ = % then (& = ékhfoTk)kEz satisfies the

hypotheses of our theorem 1.

e If g : M — {1} belongs to the class C and if [,, gdv = 0, then (§ :=go T*)ez satisfies the
hypotheses of our theorem 1.

3 Proof of theorem 1

Let us define Ty := 0 and, for all n > 1 : T4y := inf{k > T, : ffk + 57;@_1}. According to lemma 2.5 of
[1], we have the following result :

Lemma 2 If (Mr, )n>0 is transient, then (My),>0 is transient

Now, still following [1], we construct a realization of (Mr, ), :

Let us consider a symmetric random walk (S,), on Z independent of (£ )kez. For any integer m > 1
and any integer k, we define :

Ny (k) :=Card{j =0,...,m : S; = k}.



Let us also consider a sequence of independent random variables (CZ'(y))iZLyEZ with geometric distri-

bution with parameter %, and independent of (£y)yez.

Lemma 3 The process (Xn = ZyEZgy Zf\i"l_l(y) 52@), Sn) has the same distribution as (Mr, ).
- n>1

In this lemma, E’Z(y) corresponds to the duration of the stay at the y*” horizontal floor during the ** visit
to this floor.

According to the Borel-Cantelli lemma, it suffices to prove that : > o P({(X,, Sx) = (0,0)}) < +c0.

We follow the scheme of the proof of [1]. The difference will be in our way to estimate I8V and in the
introduction of the sets U,,. We will consider 41, ds, d3, and v such that :

0 <61 <265, 81+ (AL 4+16)6 < £,05>0, 230, <d3<2—20,—01, %20, <f <%~y
max(d1,d2) <y < % — 22max(d1,d2). The idea is that dy, d, % —d3 and % — f3 are positive numbers very
close to zero.

Asin [1, 2], let us define :

Ap ={w e : maxN,_1(f) < n7t% and max |Sk| < n3to}.
LEL k=0,...,n

Moreover, we define :

Up:={we A, : Yo,y €Z, |Ny_1(x) = Na_1(y)| > /|2 — yln2t7},

The sketch of the proof is the following :

1. As in proposition 4.1 of [1], we have :
ZP({Xn =0and S, =0} \ 4,) < +o0;
n>1

actually we have : " o P ({S, =0} \ 4,) < +o0;
2. We will see in lemma 4 of the present paper that we have :
> P (An \ Un) < 400
n>1

Therefore, we have :
Z]P’({Xn =0and S, =0}\ U,) < +o0;
n>0

3. Let us define B, :={w e U, : ‘ZyezgyNn—l(y) > n319} . As in proposition 4.3 of [1],we have :
> P(BaN{X,=0and S, =0}) < +oo.
YyEL
It remains to prove that :

> P (U.n{X,=0and S, =0}\ By) < +cc.
n>0

(a) Asin lemma 4.5 of [1], there exists a real number C' > 0 such that :

sup B ({Xn = 0}[(S))p1, (€e)kex) < Oy 2.
weU,\Bn, n




(b) We will prove that there exists some § > 0 and some C’ > 0 such that :
Y € U, P (Un\ Bal(Sp)p) (w) < C'n~2.

i. This probability is bounded by ¢/n2%% I, (w) with I, (w) = IT(LU(M) + 12 (w) and

42414285
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I (w ;:/ B[t TyeréVacs 0| (51 | e
@ =] s B (Sp)s]

and
1214283

(Sp)p| =57 at.

[P (w) = / 1 B[ ¢ Boer Vs )
{It]>n=b=ss+02)

ii. We will prove that nz+d I,(LU = O(n~?) for some § > 0 (see our lemma 5);
iii. On the other hand, following [1], we have :

n%+531,§2) < / 6_% ds < 2n " %2¢" 3
{ls|>n?2}

(c) We have P(Y,41 =0) < C'"n=%.

(d) Hence we have : P (U, N{X,, =0 and S, =0} \ B,) < C'p=1-9 In(n).

We have to prove that the points 2 and 3(b)(ii) are true with our choices of parameters. All the other
points are true for any positive d1,0d2,d3 and for any sequence of random variables (€x)gez independent

of (Sp)p.

We notice that, for any integer n > 1, we have : Z;L:_ol §s; = ) kenkNa—1(k). In our proof, we need
some real numbers 1, d2, d3, d4, 3, ¥ and € > 0. We will suppose that :

(51 >0, 52 > 0,(514‘(%4‘16)(52 < %,53 >0, (51 <(54 < %—(53—%(52, %—3(52 <53 < %—3(52,
26y < 365, & — 26, < B < % — 0, 305 > L + 605 + 01, max(d1,03) < v < & — 22max(d1,d2) and :
pdr+11d2 Z [E[&0Em]] IO(’Il_E).

m> £r+;)n/8

(let us recall that we have supposed : 3, v |Eléo&n]] < N73 Y o v vmlEEoén]l)

All this inequalities are true with the following choices of parameters :

1 1 1 11
512—, dy = —— 5321—152, 54:1/2500; 8=

dz 3

1
325, =
2 27

1 23
S ST
8 8773

Lemma 4 We have :

> P (An \ Un) < +o0.
n>1

Proof. Let us consider any z,y € Z with ¢ # y and |z — y| < 3n3td1 . For any integer j > 1, we define
7j(z) the time of the j** visit of (S,), to  and M;(z,y) the number of visits of (S,), to y between the
times 7;(z) and 7;41(2). According to [3, 5], for any integer p > 1, there exists K, > 0 such that, for any
z’,y, we have :

E[(M; (', y/))] < Kpla' -y~

According to [3], on the set {m(z) < 71 (y)}, we have :

Np_1(z) TNn_l(a:)+1("L‘)
(Na-1(z) = Nooi(@) = > (1= Mj(z,9) + > 1is,=y)-
7j=1 k=n



Let p be any positive integer. We have :

2p 2p
Nyp_1(z) TNn_l(m)-}-l(x)
(N1 (2) = Nacr ()" Linmgneny <27 || D20 U=Mi@y) | +| > Lsi=y
7j=1 k=n
But, on A, since we have N,_;(z) < nitis we get :
ey o1 (2) & [n3+]
2p 2
Y. Lsi=n | < (Myw(@)" < (M;(z,9)™ .
k=n =1
Hence we have:
TNn_l(a:)+1(x) r
i S Lz | laa| < iR fa— g
k=n
1.5 1.5 p—1
< nEtR Ky, |z — yfP (3n5+ 1)
1 P
< K3 o - gl (ndrees)
Moreover, on A,,, we have :
No_i(x) R k R
> (1=M(a,y)]| < max > (1= Mj(z,y))
i=1 k=1,~~,[n5+52J i=1
Since (21;21(1 — M;(z, y)))/ro1 is a martingale, according to a maximal inequality, we have :
2 2
E » k
max Z(l—Mj(a:,y)) < — max Z(I—Mj(r,y))
k:l,...,[nTMZJ j=1 p— k:l,...,[nTHQJ j=1
Lr Lp
Hence we have :
Noor (2) 2 b\ K o
Ell Y. (—Miy)| 1a,|< <—1) max B> (1-M;(x,y)
— p— k=1, |n Tt =1
J J
For any k£ =1, ..., {n%‘*‘%J, we have :
k R 2p !
E[{Y (- My) =y > MLy T EI = My, (2, 9) ],
=1 =1 vi+...411=2p; min; v; >1 h<...<iim=1

(since the M;  are independent) with MZ2P = le_p%. Since E[1 — M;(z,y)] = 0, we have :

PN 41
e =1V

2
& P

E| D 01— M(,y) <

j=1



2p

l
< Y > M 2, T @B+ (M ) ™))
I=1 vi+...4v1=2p; min; v; >2 1<...<jim=1
2p l
< > > ME LY H (2 (1 + Ky, |z =yl ")
=1 vi+...4v1=2p; min; v; >2 <. <jim=1
2p l
< 22p2|$_y|2p—l(n%+6z)l E MZZ;, qu(l"i'KVm)
=1 vi+...+v=2p; min; v; >2 m=1
2p
< Gy lo—yr (nt)
=1
2p
< G Yl -yl BnEth )ity
=1
< 2p3°Cplw — y|P (nrtmax(nd2)yp,

Hence we get : i 1
E[(Na-1(2) = Nac1(y))#14,] < Chla — y|P (n2Fmex002)yp,

Therefore, according to the Markov inequality, for any integer p > 1, we have :

PAn\Un) < [ngl] P (An N {|Nn—1($) — Np—1(y)| > W})

e

[MZI] E[(Nn-1(2) = Na-1(y))*14,]

P T4+
T, y=— [n%+51] |l y|p(7’l,2 )p

2
< o (snt#) (st

INA

By taking p large enough, we get : )" o, P(A,\ Uyp) < 00, ged.

3.1 Estimates on U,

In this section, we suppose that we are in U,,. We will estimate :

1214285

IT(Ll)(W) - /{|t|<n_%_53+52} (E |:6itEyGZ 5yNn—1(y)‘ (SP)P:| ((.d)) e_nf dt.

Lemma 5 There exists some real number § > 0 such that we have :

supn’ sup n%+53fr(11)(w) < +oo0.
n>1 welU,

We will use the following formula :

n

n3tos (1) () = 7152/ <E[6Z“” TR ety Nu-a )
{lul<1}

The main idea is to prove that, in 17(11), we can replace the term :

Bn (U)(W) = E I:eiun—%—53+52 EyeﬂgyN"—l(y)




An(u)(@) = exp (—m ZE{@&](Nn_my)(w))Z) .

Y,z

More precisely we will prove the following :

Lemma 6 There exists a real number §g > 0 such that we have :

u2n282

supn’® sup n52/ |Bp(u)(w) — Ap(u)(w)]e” 2 du < +o0. (1)
lul<1

n>1 welU,

Lemma 5 will be an easy consequence of lemma 6.

We will use the following notation : 0‘? = men Eléoém].

3.1.1 Proof of lemma 6

We adapt the idea used in [4] to establish a result of convergence in distribution for (Zz;é s, =2y &y Nn—1 (y)) S
n>1

Let n be an integer such that n”® > 2. Let us fix w € U, and u € [—1; 1]. Let us recall that 0 < 8 < %3 — 3
Let us define :

2 {n%""le +1
[n” ]

We notice that we have : L, < 4n3+91-F gince [n?] > %.

L, =

Yk =0,..., Ly, Qpy = — {n%+51J _|_/<7Lnf@J and QL 4+1) = \‘n%+51J + 1;
) 0((1c+1)—1
bk = exXp iun_5_53+62 Z gyNn—l(y) )
y:O((k)
u2 et~
ar =exp |~y 2 T (Naa ()
y:a(k)

We have to estimate : B

(Sp)p] (@) = JT ar(w)

=0

(1:[ bm) (bk — ak) ( ﬁ am/)
m=0 m!'=k+1

e We explain how we can restrict our study to the sum over the k such that (r + 1)* <k < L, — 1.
Indeed, the number of k that does not satisfy this is equal to (r 4+ 1)*+ 1. Let k € {0,..., L,,}. We
have :

n |E

L
Tin
k=0

X

Hence it is enough to estimate :

Ly
nd E
k=0

E

(Sp)p] (w)] -

IN

a+6 2 a+6 o460
E (Z &Nn—l(ﬁ)) [(Sp)p | (@) Yo Y L]l Nao1(O)(w)Naoa(m)(w)

L=a+1 l=o+1m=a+l

0 [Eigom]In' 4202,

meZ

IN



Hence we have :

Eflbe — 1][(Sp)p] (w) < n” 3T 0ut0 [ 1 (W[ 1(Sp)p | (W)
Y=0%(k)

na0 s [N [EoEn]in
mEeZ
< p—0s+282+5 ZlE[€0£M]|
meZ
200 1S [Elgoém]|
mEeZ

since we have § < %3 — d2. Moreover we have :

IN

IN

1 (k1)
lag(w) — 1] < mﬁg Z (Na-1(y)(w))?
Y=
1
B2 1420,
S guiras-a " 0"
< ln—253+452+50-2
< l —265+382 2
From which, we get :
(r+1)* -1
3 Bl = akll(Sp)p] (@) + Ellbe, — a, 1(S)p] (@) < o (n 30+ 30 4 pmdiokata) - (g)
k=0

with ¢ := ((r+ 1)* + 1), /> men El&o&m]| + %ag. Let us recall that gfiz < %63.

Hence, it remains to estimate :

L,—1 k—1 L,
77,52 Z (H bm) (bk — ak) H Ay |(Sp)p] (3)
k=(r4+1)4 m=0 m'=k+1

Let us control the following quantity :

) L,—1 k—(r+1)* 3 k—(r+1)* k—1 L
B, := n% Z E H bm H H b | =1 H b (br — ax) H am | (Sp)y
E=(r41)* m=0 j=1 m=k—(r+1)7+1 41 m'=k—r m!=k+1
We have :
) L,—1 k—(r41)7
B, E H 11 b | —1 165 — ax|Loo(wr,)-
=(r+1)* m=k—(r+1)i+141 Leo(Uy)

On U,, we have :
|bk _ 1| < n—%—53+52nﬁn%+52 < n—53+252+ﬁ.

Analogously, we get :

k—(r+1)j
H b | = 1| < r(r+ l)Jn_53+252+ﬁ.
m=k—(r+1)7+141



On the other hand, we have :
1
|ak _ 1| < §n—253+452+ﬁ0-§.

Therefore we have :

i ) .
By < An"nEt0mle3(r 4 1)° <1 + 50?) (n0et2atd)
1 1 5
< 4 (1 + 502) 13 (r 4 1)0n 3= 3051602400

according to the fact that g < 573 — 85. The control of the quantity B, comes from the fact that
3(53 > %—i— 6d2 + d1.

e [t remains to estimate :
P L
n E , E , Cr k josjn iz
k=(r41)*+1 1<j0<j1<j2<4

where Cy, i jo.51,5. 15 the following quantity :

E—(r41)? E—(r41)71 k-1 L,
E H bm H bm H bm (bk - Clk) H am! )
m=0 m=k—(r+1)7241 m=k—(r+1)jo+1 m'=k+1

with the convention : Hﬁ by, = 1if f < a.

m=uo

o Let jo, j1,j2 be fixed. Let us control Cy  j,.j,,5.- We have :

Cn kjogiiz < Dnkjogiga T Enkjoiias

where :
Lo
Dok jajs iz *= [C0V(5,), (Bnkjuar Dnega) ] ame]-
m!=k+1
and
L
En g joriz = |BL1Amk jual (Sp)pl ELLn kol (Sp)p] JT  ame| -
m!=k+1

. E—(r+1)* k—(r41)7 k-1
with A”J‘vﬂjhjz = Hm:(O ) bm Hm'ik_()r+1)j2 +1 b and F”J‘,ju = (Hm:k—(r+1)10 +1 bm) (bk‘_ak)'
o Control of the covariance terms.
Let jo,j1,j2 be fixed. Let k = (r +1)%,..., L, — 1. We have :

k L, T
Dnkjogrga < |E CO’U|(Sp)p An g jrgas H bm H Gm' ||+
m=k—(r+1)Jo+1 m!=k+1 ]
k—1 L, T
+|E COU|(5P)p A”Jﬁjl,jz’ H b H Q!
m=k—(r+1)Jo+1 m'=k ]
But we have :
01462 %61 +05+1) 1
L1
H by =exp | tun™2 93 +d2 E & Np_1(0)
m=61+1 £=0gy)

Therefore, according to point 4 of the hypothesis of our theorem, we have :

D”Jﬁjudh]é < 2C (1 + n_%_63+52 ZNH—I(K)) Pp,s
LED



with p := [n? |((r+ 1)/ — (r+1)7°) and s := [n” |(r41)7° — 1. Let us notice that we have : p > rs.
Hence we have :

L.-1
é 1—85+01 —5+24 -6 6
n’ Z Dn,k,jo,jl,j2 < 40 (n s+di—p+ 2) n=5° SUp § ©rs s
k=(r41)* s>nh
_ _783
< 4C (nl 8348, —7% +1462+262) sup SGs'Drs,s
s>nf
9
< 4C (n1_563+51+16‘52) sup SGgo,«sys
s>nh
9 27
< 4C ("1_§+61+(7+16)‘52) sup s°prs s,
s>nh

since 8 > %3 — 205 and d3 > % — 362. We finish the control of these terms by noticing that
51+ (2 +16)d2 < L.
e Control of the term with the product of the expectations.

Let jo, j1, j2 be fixed. Let k = (r +1)*, ..., L, — 1. We can notice that E, x j, j, j, is bounded from
away by the following quantity :

k k-1
Fo g jo = |E 11 bm — I b | ak| (Sp)p
m=k—(r+1)J041 m=k—(r+1)J041

We use Taylor expansions of the exponential function.

— First we explain that in F, x j,, we can replace

k k1)~ 1
A
H by, = exp | tun~ 27 9%tz E EeNn_1(£)
m:k—(r+l)j0+1 Z:O‘(k_(r_*,l)jo +1)

by the formula given by the Taylor expansion of the exponential function at the second order :

Okq1)—1 u? k1) =1 ?
=Ll 5544
1+ mun 2 3Taz2 Z gan_l(g) - m Z gan_l(g) . (4)
Z:a(k—(r-}-l)ju +1) Z:a(k—(r+1)jD +1)
Indeed, we control the error by :
1 a(k+1)—1 3
_3_
b ST N (0] 1),
Z:"(k_(r-u)io +1)
Moreover, we have :
o)1 4 Ak41)—1 4
146
E > ENaa ] 1S)] < > Pl vl (n5+)
=0 e (rg1)T0 1) Y1¥2 Y5 Ya=% e (r41)70 41)
< c6n2+452(r + 1)6n2ﬁ,

according to the hypothesis of our theorem. Hence, taking the sum over k = (r+1)*, ..., L, —1
and multiplying by n®2, this substitution induces a total error bounded by :
1

—n

52+%+51—ﬁn—%—353+352n%+352 (7“ + 1) %n%ﬁ
12

10



and so by :

1 Téo+ L1461 —-305+1p 2
Th (r+1)z.
But, using the facts that 8 < %3 — 07 and that §3 > %— 302, we have :
1 1 13 1 11
Jg+=4+61-353+=8 < —bs+=-+8§—-—6
72+2+1 33+25 S ot Foa—os
3 59
< = 427
< 16+ 4(52-1-51
1
< BET:R
- 16

since J1 + (% +16)d2 < %.
— Let us introduce Y, = ?:(2(:; sayiosn, & Np_1(€) and 7 = E?:(':r:)_l U?Nn_1(€)2. We
explain that, in F), ; j,, we can replace

k-1

. 2

mu u
II v bm | ax = exp <n§+53—52 Y = 5 i7a5. 0, Z")
m=k—(r+1)70+1

by the formula given by the Taylor expansion of the exponential function at the second order :

iu u’ 1 iu u? ?
L+ n3tos—d2 i — Inl+205—2582 Zk + 5 <n%+63—62 Yi - Inpl+2d:—24; Zk) : (5)
Indeed the modulus of the error between these two quantities is less than :
1 U u? 3 4 1 3 1 3
6 || ~1mms Ve — gprrmseasy 26| |Sode | < 5B | | —rgmgy Ye| o+ |gprmmsemess 26 1(So)s

The first term will be controled as just before. Let us control the second term. We have :

A

—1— 3 _3- 3
n 1 263+262Zk| < n 3—6J3+602 (Ug) nSﬁn3+662

p—605+120243p (Ug)?’ .

INA

Hence, taking the sum over k = (r+ 1)* ..., L,, — 1 and multiplying by n%2 we get a quantity
bounded by :
Op 501 —603+1365426 (Ug)?’ .

But we have :

1
—+6; — 603+ 1302 + 26 <

5 + 61 — b5dz + 116

N = N =

—%+51+2352<0.

IN

since @ < d3 — 205 and d3 > % — 305.

— Now, we show that in formula (5), we can ommit the term with (Z;)?. Indeed, we have :

L,—1
2 1
(r+1)*
< 2n%+51—4é3+962+@(02)2
< Qn%+61—§63+862(0€)2
S Qn_%_éél—é52(ag)2

since 3 < %"’—(52 and 3d3 > %—1—752—1—(51.

11




— Hence, it remains to estimate the following quantity called G, . j, :

1] u? 9 X
B nrmens Ok + Wh) = g, O+ W) — —om 5 Vet
u? u? 9 37 u?
+2n1+253—252 Zk + Ipl+205—25, (Yr)" + 543502 Y In1+205—25; (Sp)p ‘

with W, == Z?:(k;(i))_l ErNp_1(£). We get :

‘ [ u? u? , u?

_ 2 2
Gn,k,ju — —W (Yk + Wk) + 2n1+253_2‘52 Zk + 2n1+253_252 (Yk) (Sp)p:|

U2

2n1+253—252

E [ (Wie)? + 2W3 Y, — Zk‘ (Sp)p} ‘ .

Let us notice that we have :

oz(k+1)—1
Zei= Y | EL&) INaa (0 +2 Y Eébn]Naa(0)?
=0y m<L—1

— Let us show that, in the last expression of G, i j,, we can replace 7 by :

o1y —1
Zii= 3 | E(&) INa1 (0 +2 Y Eléebm]Na 1 () Noo1(m)
=01y m<L—1

Indeed, we have :

2 ogy1)—1

n1+253 265 Z Z E[ge&m][Nn—1(€)|Nn—1(m) — Np_1(£)]

= O‘(k) mgé 1

u ~
2n1+263—262E [ ‘Z’“ - Zk‘ ‘ (Sp)p}

1 1 1,
e Y (o]l 4o mn i+

m>1

< - i-20s43024+5+7 E VmlE[Eém]l.

m>1

Hence, taking the sum over k = (r+ 1)* ..., L,, — 1 and multiplying by n% we get a quantity

bounded by :
D IRV o )
m>1
But we have :

1 vy 1 vy
— 4+ — 205+ 45 — < —=—44 104 -
4+1 3+ 2+2_ 4+ 1+ 02+2<0

since d3 > % — 34y and v < % — 22 max(dy, da).
— Hence we have to estimate :
2

Gn,k,jg = m E{(Wk)z—l—?WkYk—Zk‘(Sp)p”
We have :
(k1) ~1
E[(We)*|(Sp)p] = > | ElE)’l(Na1(0)* +2 Z Efge &m] Nn—1(€) Nn—1(m)
=0y M= (k)
Hence we have :
X(kt1)—1 -1
E[ (W) +2WiYe| (Sp)p] = Y | El&) N Nao1(£)” +2 > E[€e&m ] Nn—1(6) Np—1(m)
=01y M=% _ (r+1)70 41

12



We get :

2 *(kt1) 1

Gunio = gmmsm| O Y Ebm]Nao1(O)Naci(m)

L=apy m<a 1

k—(r+1)70 417

u’ 8 1426

=D SR 121 U
m>£r+;)nﬂ

1
§n_253+462+ﬁ > IEEoémll.

m> £r+;)nﬂ

INA

IN

Hence, taking the sum over k = (r+ 1)*,..., L, — 1 of these quantities and multiplying by n%? we
get a quantity bounded by :

onath=2a45i N g e )| < omPit e N RG],

ngr-}—;)nﬁ ngr-}—;)nﬂ

since d3 > % — 385. To conclude it suffices to notice that :

n51+1152 Z |E[€O€m]| — O(n_e).

m> £r+;)nﬁ

3.1.2 Proof of lemma 5

Let us consider n > 2. According to lemma 6, it suffices to prove that there exists a real number §’ > 0
such that we have :

u?2n282

2
5 5 Uu 2 —un- 2
2 —_ E E (N1 (s 7 .
Tsll;}?n wsél[lj)nn /luls1eXp ( Inl+265—24, — [&;f ]( 1@)(“)) ) € u < 400

Let us take w € U,,. We have :

2

exp (‘%ugﬂZE[£y€z](Nn-1(y)(w))2) = exp (—M;Zw"? Z(Nn—l(y)(“))z) :

Let us define : p, := Card{y €Z : N,_1(y) > "53_54}. We have :

i)

1

15,

n2

< pnn%+52 + — (3n%+61 _pn)

n3=0s
< p, n%+52 _ + n%—54n%+51
- 3

— (8246

< panitos <1 _ntey 4)) + pltoi—ds
p— 3 .

Let us recall that : §; < d4 < % —d3 — 2(52. Hence we have :

- bl

Pn > n=37% (n — nl_(54_51)) > pa=% (1 — n_(é“_él)) > coné_‘s2

13



with ¢g:=1— 2= (04=01)

Hence we have :

2
ns—d1 coni—92=264
>

YEL

u? u’ 25,26
o (_ 2n1+205-26, Z"g(N"_l(y)(w))2) = o <_ 18n1+205=202 oeeon 4)
Yy

2
U 1
exp <__18 agcon5_352_253_254) .

Therefore, we have :

2 2,263
”52/| < (‘m EE{@&](Nn_my)(w))z) T du <

Y,z

2
u 1
_ 0_260715—352—263—264 du
18

nd2 v? 5 d
Y 3. (). € ——=0:C v
ni-oi—gh= Jo P\ T 187

2
1 5 v
patdat3dz4s ey ——Ugco dv.
R 18

34— 2028,

IN
3
<
[N
e~
A
=
@
»
T

IN

with the change of variable v = unt . This gives the result since dq + d3 + %(52 < % ged.

4 About the model of Guillotin-Le Ny

In this section, we prove that the hypothesis fM ﬁdu < 400 of Guillotin-Le Ny in [2] can be

replaced by fM m dv < 400, for some p > 0. In this situation, there is no need to introduce the
set Uy,; we can take U, = A,. If we take §; > 0, d > 0 and d3 > 0, all the points except the point
3(b)(ii in th ithout th d of the hypothesi —L _d .
(b)(ii) comes in the same way without the need of the hypothesis [, T v < 400

Guillotin and Le Ny have to estimate the following quantity :

sup n%""sa[fll)(w) ::/
wEAn {It]gn”

1214283

E e“EyezﬁyNn—My)‘ (sp)p} (w)e T dt.

%—53+52}

Let us take w € A,,.
We will suppose d3 > 205 and §; < d4 < % — 03 — 572,
The idea of Guillotin and Le Ny is to write :

Liss (1) 115, . Y . _12nl+28s
nzts | ‘ < n3 . I lcos(tNu_1(y)) +i(2f 0 7Y — 1) sin(tNn_1 (1))| |(Sp)p | €™ 2
{lign™370s%%2y | Ly
3403 . 2 _12nl4203
< nd BTV - 4501 - FoTu)ysin® (1N () I(S)), | e~ T
{ldgn™37%%%2y | Ly
3435 16 2 _ 213
< n? B[4S e TY(1 = foTY) 5 (ENao1 (y)?[(Sp)p | €™ 2
83484 i
{Jtl<n =3 b ez

14
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145 —872 foT V(1= foT¥)t2N,_1(y)? — a3
< [y B TL O |-
{llgn=3=sav02y | L

since [tN,_1(y)| < n=3 0stdapn3+0s — p202-0s  Hence, if n is large enough, then [t Np—1(y)| will be

s

uniformly less than 7 and [sin(tN,_1(y))| > %|th_1(y)|. We also use the fact that, for positive u, we

have : 1 —u < e™™. According to the Hélder inequality with Zy % =1, we have :
r Nn-1

2,14283

bt |10 < b 80" 0=D D Mo (5,), ] e 2257 gy
t E{jt|<n~ ¥ 9542 nr

Now, we use the fact that, since d4 > J1, there exists a constant ¢ such that we have :

3_

Vo' € An, D (Nas1()? (W) > en3%2720
Y

This has been proved in the previous section called ’proof of lemma 5’. Hence, under the hypothesis

fM 7\”(11—_” dv < +o0o of Guillotin and Le Ny, we have :

>
=
P
€
&
IA

3 _§,—258 2,1428
n3tds F €—S7r2f(1—f)t2n2 27284 6—%&
{Jt]<n3—0s+82y

n—%+63+%+64/E ! o877 g
R fa=7

with the change of variable v = t\/f(l — f)n%_52_2‘54. We adapt this argument to our hypothesis. Now
let us replace the hypothesis fM ﬁ dv < 400 by fM m dv < 400 for some p > 0. Let us take

INA

01 < 04 < % — 03 — %2 — %. We use the fact that there exists a constant ¢, > 0 such that, for any real
number u > 0, we have : e™® < i—f, We have :

1 2 2 3_5,-25 12,14283 1 _ 3,85 8o
n5+53/ 415240 E |:6—87r f(1=f)t"n27"2 4:| e T dt S n5+53n T+ =5 +0a+ 7
{ltlgn ™22 T
< o et FH+ R

On the other hand, we have :

n%+53 f E|:e—87r2f(1—f)t2n%_52—254} o t2n12+253 dt <
n"

3,82 &2
pT At Tt <|t|<n_%_53+52}

28,
< n%+63n—%—63+62/ 8= g,
M

we (5) [ 10 pr e

IN
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