Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2 Stability for Nonlinear Filtering Continuous Time Noncompact Case

Alexander Veretennikov¹ Marina Kleptsyna²

¹University of Leeds, UK

²University of Le Mans, France

October, 20th, 2008 / Brest

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equati and diffusion processes

Harnack inequality

Birkhoff metric

Ergodic processes

Sketch of the proof

Coupling and separation The main inequal Sketch of the pro part 2

Introduction

- Problem statement
- Historical survey
- 2

Assumptions and main result

3 Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in \mathbb{R}^d
- Reformulation of the problem, the Bayes approach

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

4 Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequali

Birkhoff metric

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo part 2

Introduction

Problem statement

Historical survey

Assumptions and main result

Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in \mathbb{R}^d
- Reformulation of the problem, the Bayes approach

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Statement of the problem

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

The model

Nonobservable ergodic diffusion process (X_t) with

- values in \mathbb{R}^d ;
- observations (Y_t) from \mathbb{R}^{ℓ} ;
- initial distribution μ_0 (of X_0) known with some error.

he question

Is this error forgotten by the optimal filtering algorithm in the long run?

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

A question for discussion

What does it mean "the optimal filtering algorithm" ?

Statement of the problem

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

The model

Nonobservable ergodic diffusion process (X_t) with

- values in \mathbb{R}^d ;
- observations (Y_t) from \mathbb{R}^{ℓ} ;
- initial distribution μ_0 (of X_0) known with some error.

The question

Is this error forgotten by the optimal filtering algorithm in the long run?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A question for discussion

What does it mean "the optimal filtering algorithm" ?

Statement of the problem

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

The model

Nonobservable ergodic diffusion process (X_t) with

- values in \mathbb{R}^d ;
- observations (Y_t) from \mathbb{R}^{ℓ} ;
- initial distribution μ_0 (of X_0) known with some error.

The question

Is this error forgotten by the optimal filtering algorithm in the long run?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A question for discussion

What does it mean "the optimal filtering algorithm" ?

The observation model the precise definition

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation The main inequali Sketch of the proc part 2

Markov diffusion process:

1

$$dX_t = b(X_t)dt + dW_t, \quad (t \ge 0),$$

observation:

$$dY_t = h(X_t)dt + dV_t \quad (t \ge 0),$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where

■ (W_t, V_t) is $\mathbb{R}^{d+\ell}$ valued Wiener process; ■ $b : \mathbb{R}^d \to \mathbb{R}^d$; ■ $h : \mathbb{R}^d \to \mathbb{R}^{\ell}$;

The observation model the precise definition

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo part 2

Markov diffusion process:

$$dX_t = b(X_t)dt + dW_t, \quad (t \ge 0),$$

observation:

$$dY_t = h(X_t)dt + dV_t \quad (t \ge 0),$$

where

• (W_t, V_t) is $\mathbb{R}^{d+\ell}$ valued Wiener process; • $b : \mathbb{R}^d \to \mathbb{R}^d$; • $h : \mathbb{R}^d \to \mathbb{R}^\ell$;

Stating the main question

Ergodic Filters

Veretennikov Kleptsyna

ntroduction

Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2 The true conditional probability:

$$\mathbf{P}_t^{\mu_0,Y}(\cdot) = \mathcal{P}_{\mu_0}(X_t \in \cdot \mid \mathcal{F}_t^Y),$$

• with
$$\mathcal{F}_t^{\mathbf{Y}} = \sigma(\mathbf{Y}_s : \mathbf{0} \le s \le t)$$
,
• with the initial measure μ_0 .

The strange conditional probability:

$$\mathsf{P}_t^{
u_0,Y}(\cdot) = \mathsf{P}_t^{\mu_0,Y}(\cdot) \mid \mu_0 =
u_0$$

・ ロ ト ・ 雪 ト ・ 目 ト ・

ъ

• with μ_0 replaced by ν_0 .

The question for discussion:

Why $\mathbf{P}_{t}^{\nu_{0},Y}(\cdot)$ is well defined?

Stating the main question

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2 The true conditional probability:

$$\mathbf{P}_t^{\mu_0,Y}(\cdot) = \mathcal{P}_{\mu_0}(X_t \in \cdot \mid \mathcal{F}_t^Y),$$

• with
$$\mathcal{F}_t^{Y} = \sigma(Y_s : 0 \le s \le t)$$
,
• with the initial measure μ_0 .

The strange conditional probability:

$$\mathbf{P}_t^{\nu_0,Y}(\cdot) = \mathbf{P}_t^{\mu_0,Y}(\cdot) \mid \mu_0 = \nu_0.$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

• with μ_0 replaced by ν_0 .

The question for discussion:

Why $\mathbf{P}_{t}^{\nu_{0},Y}(\cdot)$ is well defined?

Stating the main question

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

The true conditional probability:

$$\mathbf{P}_t^{\mu_0,Y}(\cdot)=\mathbf{P}_{\mu_0}(X_t\in\cdot\mid\mathcal{F}_t^Y),$$

• with
$$\mathcal{F}_t^{Y} = \sigma(Y_s : 0 \le s \le t)$$
,
• with the initial measure μ_0 .

The strange conditional probability:

$$\mathbf{P}_t^{\nu_0,Y}(\cdot) = \mathbf{P}_t^{\mu_0,Y}(\cdot) \mid \mu_0 = \nu_0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• with μ_0 replaced by ν_0 .

The question for discussion:

Why $\mathbf{P}_{t}^{\nu_{0},Y}(\cdot)$ is well defined?

The main question, formulation

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement

Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approar

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

The main question:

True or false:

$$\lim_{t\to\infty} E_{\mu_0} \| \mathbf{P}_t^{\mu_0, Y}(\cdot) - \mathbf{P}_t^{\nu_0, Y}(\cdot) \|_{\tau_V} = 0?$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Stability of filters

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

Stability of filters

True or false:

$$\lim_{t o \infty} E_{\mu_0}(\pi_t^{\mu_0,Y}(f) - \pi_t^{
u_0,Y}(f))^2 = 0? \quad orall f \in \mathcal{C}_b$$

where

■ the true conditional expectation:

$$\pi_t^{\mu_0,Y}(f) = \mathcal{E}_{\mu_0}(f(X_t) \mid \mathcal{F}_t^Y)$$

the strange conditional expectation:

$$\pi_t^{\nu_0, Y}(f) = E_{\mu_0}(f(X_t) \mid \mathcal{F}_t^Y) \mid \mu_0 = \nu_0$$

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Stability of filters

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Stability of filters

True or false:

$$\lim_{t \to \infty} E_{\mu_0}(\pi_t^{\mu_0, Y}(f) - \pi_t^{\nu_0, Y}(f))^2 = 0? \quad \forall f \in C_b$$

where

the true conditional expectation:

$$\pi_t^{\mu_0,Y}(f) = \mathcal{E}_{\mu_0}(f(X_t) \mid \mathcal{F}_t^Y)$$

the strange conditional expectation:

$$\pi_t^{\nu_0,Y}(f) = E_{\mu_0}(f(X_t) \mid \mathcal{F}_t^Y) \mid \mu_0 = \nu_0.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equatio and diffusion processes Harnack inequalit

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo part 2

Introduction

Problem statement

Historical survey

Assumptions and main result

Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in \mathbb{R}^d
- Reformulation of the problem, the Bayes approach

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Ergodic Filters

Veretennikov, Kleptsyna

- Introduction Problem statement Historical survey
- Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

D.Blackwell, 1957

he model

Nonobservable **stationary** ergodic **finite** state Markov chain (X_n)

• observations $Y_n = \Phi(X_n)$

Φ is not one-to-one.

he question

Is the stationary measure of the conditional distribution unique?

A question for discussion

What is the connection with the subject of the talk?

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Baves approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

D.Blackwell, 1957

The model

Nonobservable **stationary** ergodic **finite** state Markov chain (X_n)

• observations $Y_n = \Phi(X_n)$

Φ is not one-to-one.

he question

Is the stationary measure of the conditional distribution unique?

A question for discussion

What is the connection with the subject of the talk?

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

D.Blackwell, 1957

The model

Nonobservable **stationary** ergodic **finite** state Markov chain (X_n)

• observations $Y_n = \Phi(X_n)$

Φ is not one-to-one.

The question

Is the stationary measure of the conditional distribution unique?

A question for discussion

What is the connection with the subject of the talk?

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

D.Blackwell, 1957

The model

Nonobservable **stationary** ergodic **finite** state Markov chain (X_n)

• observations $Y_n = \Phi(X_n)$

Φ is not one-to-one.

The question

Is the stationary measure of the conditional distribution unique?

A question for discussion

What is the connection with the subject of the talk?

Stability and uniqueness

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Two related questions

Blackwell: Is a stationary measure unique (only *Q*)?We: Is the filter stable?

act

Stability of filter \Rightarrow **uniqueness** of stationary measure. (A. Budhiraja, H.J.Kushner).

A.Budhiraja (2008) - link between different properties of the nonlinear filter process:

ъ

- Stability of the filter with respect to initial conditions
- Uniqueness of the invariant measure of the filter
- "Finite memory" property of the filter

Stability and uniqueness

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Two related questions

Blackwell: Is a stationary measure unique (only *Q*)?We: Is the filter stable?

Fact

Stability of filter \Rightarrow **uniqueness** of stationary measure. (A. Budhiraja, H.J.Kushner).

A.Budhiraja (2008) - link between different properties of the nonlinear filter process:

- Stability of the filter with respect to initial conditions
- Uniqueness of the invariant measure of the filter
- "Finite memory" property of the filter

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approad

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

1971, 1991, H. Kunita: "yes" in diffusion model.

Model:

Signal X_t — ergodic Markov process valued in a locally compact space.

Observations:

$$dY_t = h(X_t)dt + dW_t$$

Claim:

$$\lim_{t\to\infty} E_{\mu_0}(f(X_t)-\pi_t^{\mu_0,Y}(f))^2$$

does non depend on μ_0 , the invariant measure of the filtering process is unique.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approad

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

1971, 1991, H. Kunita: "yes" in diffusion model.

Model:

Signal X_t — ergodic Markov process valued in a locally compact space.

Observations:

$$dY_t = h(X_t)dt + dW_t$$

Claim:

$$\lim_{t\to\infty} E_{\mu_0}(f(X_t)-\pi_t^{\mu_0,Y}(f))^2$$

does non depend on μ_0 , the invariant measure of the filtering process is unique.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approad

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

1971, 1991, H. Kunita: "yes" in diffusion model.

Model:

Signal X_t — ergodic Markov process valued in a locally compact space.

Observations:

$$dY_t = h(X_t)dt + dW_t$$

Claim:

 $\lim_{t\to\infty}E_{\mu_0}(f(X_t)-\pi_t^{\mu_0,Y}(f))^2$

does non depend on μ_0 , the invariant measure of the filtering process is unique.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approad

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof

1971, 1991, H. Kunita: "yes" in diffusion model.

Model:

Signal X_t — ergodic Markov process valued in a locally compact space.

Observations:

$$dY_t = h(X_t)dt + dW_t$$

Claim:

$$\lim_{t\to\infty} E_{\mu_0}(f(X_t)-\pi_t^{\mu_0,Y}(f))^2$$

does non depend on μ_0 ,

the invariant measure of the filtering process is unique.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof

1971, 1991, H. Kunita: "yes" in diffusion model.

Model:

Signal X_t — ergodic Markov process valued in a locally compact space.

Observations:

$$dY_t = h(X_t)dt + dW_t$$

Claim:

$$\lim_{t\to\infty}E_{\mu_0}(f(X_t)-\pi_t^{\mu_0,Y}(f))^2$$

does non depend on μ_0 ,

the invariant measure of the filtering process is unique.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The first time, sometimes the answer is "no"

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

1974, Kaijser : a counter-example

X_n - an ergodic Markov chain with S = {1, 2, 3, 4}
 transition matrix

$$\Lambda = \frac{1}{2} \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{array} \right)$$

• observation (**noiseless**): $\mathbf{Y}_n = \mathbf{1}_{X_n=1} + \mathbf{1}_{X_n=3}$

Result: there is no uniqueness, no stability

 $\lim_{n\to\infty} E_{\mu_0}(\pi_n^{\mu_0,Y}(x)-\pi_n^{\nu_0,Y}(x))^2 \geq C(\mu_0,\nu_0)>0.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The first time, sometimes the answer is "no"

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

1974, Kaijser : a counter-example

X_n - an ergodic Markov chain with S = {1, 2, 3, 4}
transition matrix

$$\Lambda = rac{1}{2} \left(egin{array}{ccccc} 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \end{array}
ight)$$

• observation (**noiseless**): $\mathbf{Y}_n = \mathbf{1}_{X_n=1} + \mathbf{1}_{X_n=3}$

Result: there is no uniqueness, no stability

$$\lim_{n\to\infty} E_{\mu_0}(\pi_n^{\mu_0,Y}(x)-\pi_n^{\nu_0,Y}(x))^2 \geq C(\mu_0,\nu_0) > 0.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

At the same time, independently, I

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

1991, Delyon & Zeitouni :

- consider finite state space ergodic signal or linear case;
- introduce the term "memory length" of filters;
- propose a programme of analysis of exponential stability of filters using Lyapounov exponents.

1996, D.Ocone, E.Pardoux :

- consider Kunita's model.
- **Claim**: The optimal filter is stable:

 $\lim_{n \to \infty} E_{\mu_0}(\pi_n^{\mu_0, Y}(f) - \pi_n^{\nu_0, Y}(f))^2 = 0 \quad \forall f \in C_b, \, \nu_0 \sim \mu_0.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(the proof is crucially based on the H. Kunita result)

At the same time, independently, I

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes appropri

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

1991, Delyon & Zeitouni :

consider finite state space ergodic signal or linear case;

- introduce the term "memory length" of filters;
- propose a programme of analysis of exponential stability of filters using Lyapounov exponents.

1996, D.Ocone, E.Pardoux :

consider Kunita's model.

Claim: The optimal filter is stable:

 $\lim_{n \to \infty} E_{\mu_0}(\pi_n^{\mu_0, Y}(f) - \pi_n^{\nu_0, Y}(f))^2 = 0 \quad \forall f \in C_b, \ \nu_0 \sim \mu_0.$

(日) (日) (日) (日) (日) (日) (日)

(the proof is crucially based on the H. Kunita result)

At the same time, independently, I

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

1991, Delyon & Zeitouni :

consider finite state space ergodic signal or linear case;

- introduce the term "memory length" of filters;
- propose a programme of analysis of exponential stability of filters using Lyapounov exponents.

■ 1996, D.Ocone, E.Pardoux :

- consider Kunita's model.
- **Claim**: The optimal filter is stable:

$$\lim_{n\to\infty} E_{\mu_0}(\pi_n^{\mu_0,\,Y}(f)-\pi_n^{\nu_0,\,Y}(f))^2=0 \quad \forall f\in C_b,\,\nu_0\sim\mu_0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(the proof is crucially based on the H. Kunita result)

At the same time, independently, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approar

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

1997, Atar & Zeitouni

- consider discrete and continuous time, compact valued Markov signal;
- use Birkhoff contraction principle.

1998, Atar

considers continuous time, one dimensional non-compact case, with linear observations and sufficiently small noise in observations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

At the same time, independently, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo

1997, Atar & Zeitouni

- consider discrete and continuous time, compact valued Markov signal;
- use Birkhoff contraction principle.

1998, Atar

considers continuous time, one dimensional non-compact case, with linear observations and sufficiently small noise in observations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

A bit later

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

2004 P.Baxendale, P.Chiganskii, R.Liptser Serious gap in Kunita's proof.

The Kunita's proof was based on the following:

Frue or false

for an **ergodic** Markov process *X*_t?

A bit later

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo part 2

2004 P.Baxendale, P.Chiganskii, R.Liptser Serious gap in Kunita's proof.

The Kunita's proof was based on the following:

True or false

$$\bigcap_{n\geq 1} \mathcal{F}_{[0,\infty)}^{Y} \bigvee \mathcal{F}_{[n,\infty)}^{X} = \mathcal{F}_{[0,\infty)}^{Y}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for an **ergodic** Markov process X_t?

Nothing is clear

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Counterexample for the proof

an **ergodic** Markov process X_t with

- state space $S = \{1, 2, 3, 4\};$
- transition intensity matrix:

$$\Lambda = \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

noiseless observation: $\mathbf{Y}_n = \mathbf{1}_{X_n=1} + \mathbf{1}_{X_n=3}$.

Result: the answer is "False". Also, filter is unstable, the invariant measure of the filtering process is not unique.

Nothing is clear

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Counterexample for the proof

an **ergodic** Markov process X_t with

- state space $S = \{1, 2, 3, 4\};$
- transition intensity matrix:

$$\Lambda = \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

noiseless observation: $\mathbf{Y}_n = \mathbf{1}_{X_n=1} + \mathbf{1}_{X_n=3}$.

Result: the answer is "False". Also, filter is unstable, the invariant measure of the filtering process is not unique.

Ergodic Filters

Veretennikov, Kleptsyna

- Introduction Problem statement Historical survey
- Assumption and main result
- Auxiliaries
- Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes
- The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof,

- Le Gland & Oudjane (2003) discrete time, stability properties under uniform ergodicity conditions.
- Budhiraja & Ocone (1999), Oudjane & Rubenthaler (2005) — discrete time, small observation noise.
- Stannat (2005) Continuous time case, a gradient type drift and linear observation part under additional assumptions.
- Liptser, Chigansky (2005,2006,2007) continuous time compact case, exponential stability via Lyapounov exponents.
- van Handel (2008)- Kunita's proof is revised

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof,

- Le Gland & Oudjane (2003) discrete time, stability properties under uniform ergodicity conditions.
- Budhiraja & Ocone (1999), Oudjane & Rubenthaler (2005) — discrete time, small observation noise.
- Stannat (2005) Continuous time case, a gradient type drift and linear observation part under additional assumptions.
- Liptser, Chigansky (2005,2006,2007) continuous time compact case, exponential stability via Lyapounov exponents.
- van Handel (2008)- Kunita's proof is revised

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

Sketch of the

Coupling and separation The main inequality Sketch of the proof,

- Le Gland & Oudjane (2003) discrete time, stability properties under uniform ergodicity conditions.
- Budhiraja & Ocone (1999), Oudjane & Rubenthaler (2005) — discrete time, small observation noise.
- Stannat (2005) Continuous time case, a gradient type drift and linear observation part under additional assumptions.
- Liptser, Chigansky (2005,2006,2007) continuous time compact case, exponential stability via Lyapounov exponents.

van Handel (2008)- Kunita's proof is revised

Ergodic Filters

Veretennikov, Kleptsyna

- Introduction Problem statement Historical survey
- Assumption and main result

Auxiliaries

- Parabolic equations and diffusion processes Harnack inequality Birkhoff metric
- Ergodic processes
- The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof

- Le Gland & Oudjane (2003) discrete time, stability properties under uniform ergodicity conditions.
- Budhiraja & Ocone (1999), Oudjane & Rubenthaler (2005) — discrete time, small observation noise.
- Stannat (2005) Continuous time case, a gradient type drift and linear observation part under additional assumptions.
- Liptser, Chigansky (2005,2006,2007) continuous time compact case, exponential stability via Lyapounov exponents.
- van Handel (2008)- Kunita's proof is revised

Reminder

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

The model

- Markov diffusion process: $dX_t = b(X_t)dt + dW_t$,
- observation: $dY_t = h(X_t)dt + dV_t$.

The question

True or false:

$$\lim_{t \to \infty} E_{\mu_0} \| \mathbf{P}_t^{\mu_0, Y}(\cdot) - \mathbf{P}_t^{\nu_0, Y}(\cdot) \|_{\tau_V} = 0?$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assumptions, I

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

(A0) *b* is locally bounded;

(A1_ρ) : the signal is **recurrent**(Khasminskii-Veretennikov conditions):

$$= 0: \qquad \limsup_{|x|\to\infty} \left\langle b(x), \frac{x}{|x|} \right\rangle \le -r, \ r > 0$$

0

$$= 1 : \lim_{|x| \to \infty} \langle b(x), x \rangle = -\infty.$$

ixamples

 $(p = 0): b(x) = -sign(x), b(x) = -x; \dots$

 $(p = 1): b(x) = -\frac{\arctan(x)}{\sqrt{1+|x|}};$

Assumptions, I

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2 (A0) *b* is locally bounded; (A1_p) : the signal is **recurrent** (Khasminskii-Veretennikov conditions): p = 0: $\limsup_{|x| \to \infty} \left\langle b(x), \frac{x}{|x|} \right\rangle \le -r, r > 0$ or

p = 1: $\lim_{|x| \to \infty} \langle b(x), x \rangle = -\infty.$

xamples

$$(p = 0) : b(x) = -sign(x), b(x) = -x; \dots$$

$$(p = 1) : b(x) = -\frac{\arctan(x)}{\sqrt{1 + |x|}};$$

Assumptions, I

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2 (A0) *b* is locally bounded; (A1_p) : the signal is **recurrent** (Khasminskii-Veretennikov conditions): p = 0: $\limsup_{|x|\to\infty} \left\langle b(x), \frac{x}{|x|} \right\rangle \le -r, r > 0$ or p = 1: $\lim_{|x|\to\infty} \left\langle b(x), x \right\rangle = -\infty.$

Examples

$$(p = 0): b(x) = -sign(x), b(x) = -x; \dots$$

$$(p=1): b(x) = -rac{\arctan(x)}{\sqrt{1+|x|}}; \dots$$

Assumptions, II

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approad

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proor part 2

(A2) The function *h* is smooth enough: $h \in C^2$, & $\|\nabla h\|_{C^1} < \infty$.

the first state of a set of a state base of the set of the

(A3) : Initial data is absolutely continuous.

(A4) Initial moments are finite:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Assumptions, II

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proor part 2 (A2) The function *h* is smooth enough:

$$h \in C^2$$
, & $\|\nabla h\|_{C^1} < \infty$.

(A3) : Initial data is absolutely continuous.

$$\left\|\frac{d\mu_0}{d\nu_0}\right\|_{L_{\infty}(\nu_0)}<\infty.$$

(A4) Initial moments are finite:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assumptions, II

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proor part 2 (A2) The function *h* is smooth enough:

$$h \in C^2$$
, & $\|\nabla h\|_{C^1} < \infty$.

(A3) : Initial data is absolutely continuous.

$$\left\|\frac{d\mu_0}{d\nu_0}\right\|_{L_{\infty}(\nu_0)} < \infty.$$

(A4) Initial moments are finite:

 $\int e^{c|x|}\mu_0(dx) < \infty.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Stability with bounds - main result

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Anabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approar

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

Theorem

Under Assumptions (A0) – (A4) the following bounds hold:

$$E_{\mu_0} \| \boldsymbol{P}_t^{\mu_0,Y}(\cdot) - \boldsymbol{P}_t^{\nu_0,Y}(\cdot) \|_{\tau v} \leq \left\{ \begin{array}{ll} C_m t^{-m}, & p=1, \quad \forall m>0, \\ C \exp(-ct), & p=0. \end{array} \right.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equations and diffusion processes

Harnack inequali Birkhoff metric

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation The main inequali Sketch of the proo part 2

Introduction

- Problem statement
- Historical survey
- Assumptions and main resu

3 Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in \mathbb{R}^d
- Reformulation of the problem, the Bayes approach

・ コット (雪) (小田) (コット 日)

Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Conditional distribution, a particular case

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric

The Baves approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

A pair

Let the pair (X, Y) be the solution of:

$$\begin{cases} dX_s = b(Y, X_s) ds + dW_s, \\ dY_s = dB_s, \end{cases}$$

with independent (W, B)

ts first component

and let X_s^{ψ} be s.t. (with **deterministic** ψ) :

$${ extsf{d}} X^\psi_{m{s}} = { extsf{b}}(\psi, X^\psi_{m{s}}) \, { extsf{d}} {m{s}} + { extsf{d}} W_{m{s}}$$

Then the **conditional** law $\mathcal{L}(X \mid Y)$ is just the **law** of X^{ψ} with a **substitution** $\psi = Y$.

Conditional distribution, a particular case

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

A pair

Let the pair (X, Y) be the solution of:

$$\begin{cases} dX_s = b(Y, X_s) ds + dW_s, \\ dY_s = dB_s, \end{cases}$$

with independent (W, B)

Its first component

and let X_s^{ψ} be s.t. (with **deterministic** ψ) :

$$dX^\psi_{m{s}} = m{b}(\psi, X^\psi_{m{s}})\, dm{s} + dW_{m{s}}$$

Then the **conditional** law $\mathcal{L}(X \mid Y)$ is just the **law** of X^{ψ} with a **substitution** $\psi = Y$.

Conditional distribution, a particular case

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

A pair

Let the pair (X, Y) be the solution of:

$$\begin{cases} dX_s = b(Y, X_s) ds + dW_s, \\ dY_s = dB_s, \end{cases}$$

with independent (W, B)

Its first component

and let X_s^{ψ} be s.t. (with **deterministic** ψ) :

$$d X^\psi_{m{s}} = m{b}(\psi, X^\psi_{m{s}}) \, dm{s} + d W_{m{s}}$$

Then the **conditional** law $\mathcal{L}(X \mid Y)$ is just the **law** of X^{ψ} with a **substitution** $\psi = Y$.

Cauchy problem

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Diffusion process

$$dX_t^{\psi} = b(\psi(t), X_t^{\psi})dt + dW_t, \quad (t \ge 0),$$

Then $E_x f(X_t^{\psi}) \exp[\int_0^t c(s, X_s^{\psi}) ds] = u^{\psi}(0, x)$ is the solution of:

Cauchy problem

$$u_s + \Delta u/2 + b(\psi(s), x)\nabla u + c(s, x)u = 0, \quad u(t, x) = f(x)$$

・ コット (雪) (小田) (コット 日)

Continuity properties of the solution w.r.t ψ are known.

Cauchy problem

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Diffusion process

$$dX_t^\psi = b(\psi(t), X_t^\psi)dt + dW_t, \quad (t \ge 0),$$

Then $E_x f(X_t^{\psi}) \exp[\int_0^t c(s, X_s^{\psi}) ds] = u^{\psi}(0, x)$ is the solution of:

Cauchy problem

 $u_s + \Delta u/2 + b(\psi(s), x)\nabla u + c(s, x)u = 0, \quad u(t, x) = f(x)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Continuity properties of the solution w.r.t ψ are known.

Cauchy problem

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Diffusion process

$$dX_t^\psi=b(\psi(t),X_t^\psi)dt+dW_t,\quad(t\geq 0),$$

Then $E_x f(X_t^{\psi}) \exp[\int_0^t c(s, X_s^{\psi}) ds] = u^{\psi}(0, x)$ is the solution of:

Cauchy problem

$$u_s + \Delta u/2 + b(\psi(s), x)\nabla u + c(s, x)u = 0, \quad u(t, x) = f(x)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Continuity properties of the solution w.r.t ψ are known.

The first boundary problem

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes

Sketch of the

proof

Coupling and separation The main inequality Sketch of the proof, part 2

A bounded domain

Let

$$D_0 := \{ \sup_{0 \le s \le 1} |X_s^{\psi}| < R+1 \}.$$

Then $E_x\left(1(D_0)f(X_1^{\psi})\right)\exp[\int_0^1 c(s,X_s^{\psi})ds] = u^{\psi}(0,x) -$ solution of

he first boundary problem

 $u_s + \frac{1}{2}\Delta u + b(\psi, x)\nabla u + c(s, x)u = 0,$ $u^{\psi}(1, x) = f(x); \quad u^{\psi}(s, x) = 0, \ 0 < s < 1, \ |x| = R + 1.$

・ コット (雪) (小田) (コット 日)

The first boundary problem

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality

Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

A bounded domain

Let

$$D_0 := \{ \sup_{0 \le s \le 1} |X_s^{\psi}| < R+1 \}.$$

Then
$$E_x\left(1(D_0)f(X_1^{\psi})\right)\exp[\int_0^1 c(s,X_s^{\psi})ds] = u^{\psi}(0,x) -$$
solution of

The first boundary problem

$$u_s + rac{1}{2}\Delta u + b(\psi, x)
abla u + c(s, x)u = 0,$$

 $u^{\psi}(1, x) = f(x); \quad u^{\psi}(s, x) = 0, \ 0 < s < 1, \ |x| = R + 1.$

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equation and diffusion processes

Harnack inequality

Birkhoff metric

Ergodic processes

Sketch of the proof

Coupling and separation The main inequali Sketch of the proc part 2

Introduction

- Problem statement
- Historical survey

Assumptions and main result

3 Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in \mathbb{R}^d
- Reformulation of the problem, the Bayes approach

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Harnack's inequality

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equatio and diffusion processes

Harnack inequality

Birknoff metric

The Device second

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2 Let *u* ≥ 0 be a solution of the first boundary problem with ■ **uniformly bounded** coefficients,

■ final condition in a cylinder

$$\{(t, x): 0 < t < 1; |x| < \mathbf{R+1}, \}.$$

Variant of Harnack's inequality: Krylov, Safonov, 1980

$$\sup_{x|,|z|\leq \mathbf{R}} \ \frac{u(0,x)}{u(0,z)} \leq C_{\scriptscriptstyle R}$$

where C_R depends only on R and on the upper bounds of the coefficients.

・ コット (雪) (小田) (コット 日)

Harnack's inequality

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes

Harnack inequality

Birkhoff metric

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2 Let *u* ≥ 0 be a solution of the first boundary problem with ■ **uniformly bounded** coefficients,

final condition in a cylinder

$$\{(t, x) : 0 < t < 1; |x| < \mathbf{R+1}, \}.$$

Variant of Harnack's inequality: Krylov, Safonov, 1980

$$\sup_{x|,|z|\leq \mathbf{R}} \ \frac{u(0,x)}{u(0,z)} \leq C_{\scriptscriptstyle R}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

where C_R depends only on R and on the upper bounds of the coefficients.

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equation and diffusion processes

Harnack inequality

Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequali Sketch of the proo part 2

Introduction

- Problem statement
- Historical survey

Assumptions and main result

3 Auxiliaries for the proof

Parabolic equations and diffusion processesHarnack inequality

Birkhoff metric

- Ergodic processes in R^d
- Reformulation of the problem, the Bayes approach

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Birkhoff metric

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proor part 2

Definition

The Birkhoff distance between positive measures:

$$p(\mu,
u) = \left\{egin{array}{ll} {\sf ln} \sup({d\mu}/{d
u}) + {\sf ln} \sup({d
u}/{d\mu}), & {\sf if finite,} \ +\infty, & {\sf otherwise.} \end{array}
ight.$$

Remark. It is a pseudo-distance, measuring the difference between directions.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Birkhoff metric

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequalit

Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

Definition

The Birkhoff distance between positive measures:

$$ho(\mu,
u) = \left\{egin{array}{ll} {\sf ln} \, {\sf sup}({m d}\mu/{m d}
u) + {\sf ln} \, {\sf sup}({m d}
u/{m d}\mu), & {\sf if} \; {\sf finite}, \ +\infty, & {\sf otherwise}. \end{array}
ight.$$

Remark. It is a pseudo-distance, measuring the difference between directions.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Comparison of total variation distance and Birkhoff distance

(Christophe Leuriden, private communication)

For normalized measures μ and ν :

$$\|\mu - \nu\|_{\mathrm{TV}} \le \rho(\mu, \nu)$$

The converse statement does not hold.

xample

$$egin{array}{rcl} q_{\mu}(x) &=& {f 1}\,(x\in [-1/2,1/2]) \ q_{
u}(x) &=& rac{1}{2}\cdot {f 1}\,(|x|\in [arepsilon,1/2]) + C\cdot {f 1}\,(x\in [-arepsilon,arepsilon]) \end{array}$$

Then $\|\mu - \nu\|_{\tau \nu} = 1 - 2\varepsilon$, $\rho(\mu, \nu) = \ln(1 + \frac{2}{\varepsilon})$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Comparison of total variation distance and Birkhoff distance

(Christophe Leuriden, private communication)

For normalized measures μ and ν :

$$\|\mu - \nu\|_{\mathrm{TV}} \le \rho(\mu, \nu)$$

The converse statement does not hold.

xample

$$\begin{array}{lll} q_{\mu}(x) &=& {\bf 1}\,(x \in [-1/2, 1/2]) \\ q_{\nu}(x) &=& \frac{1}{2} \cdot {\bf 1}\,(|x| \in [\varepsilon, 1/2]) + C \cdot {\bf 1}\,(x \in [-\varepsilon, \varepsilon]) \end{array}$$

Then
$$\|\mu - \nu\|_{TV} = 1 - 2\varepsilon$$
, $\rho(\mu, \nu) = \ln(1 + \frac{2}{\varepsilon})$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Comparison of total variation distance and Birkhoff distance

(Christophe Leuriden, private communication)

For normalized measures μ and ν :

$$\|\mu - \nu\|_{\mathrm{TV}} \le \rho(\mu, \nu)$$

The converse statement does not hold.

xample

$$\begin{array}{lll} q_{\mu}(x) & = & {\bf 1} \, (x \in [-1/2, 1/2]) \\ q_{\nu}(x) & = & \frac{1}{2} \cdot {\bf 1} \, (|x| \in [\varepsilon, 1/2]) + C \cdot {\bf 1} \, (x \in [-\varepsilon, \varepsilon]) \end{array}$$

Then
$$\|\mu - \nu\|_{\tau \nu} = 1 - 2\varepsilon$$
, $\rho(\mu, \nu) = \ln(1 + \frac{2}{\varepsilon})$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Comparison of total variation distance and Birkhoff distance

(Christophe Leuriden, private communication)

For normalized measures μ and ν :

$$\|\mu - \nu\|_{\mathrm{TV}} \le \rho(\mu, \nu)$$

The converse statement does not hold.

Example

$$\begin{array}{lll} q_{\mu}(x) &=& \mathbf{1} \left(x \in [-1/2, 1/2] \right) \\ q_{\nu}(x) &=& \frac{1}{2} \cdot \mathbf{1} \left(|x| \in [\varepsilon, 1/2] \right) + C \cdot \mathbf{1} \left(x \in [-\varepsilon, \varepsilon] \right) \end{array}$$

Then
$$\|\mu - \nu\|_{\tau \nu} = 1 - 2\varepsilon$$
, $\rho(\mu, \nu) = \ln(1 + \frac{2}{\varepsilon})$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Birkhoff contraction for nonnegative kernels: Let $\mathbf{Q} : \mathcal{M}(R^d) \to \mathcal{M}(R^d)$ s.t.: $\mu \mathbf{Q}(dy) = \int_{R^d} Q(x, dy) \mu(dx)$.

Contraction

$$\rho(\mu \mathbf{Q}, \nu \mathbf{Q}) \leq \frac{C^2 - 1}{C^2 + 1} \rho(\mu, \nu), \text{ with}$$

(Krasnosel'skii, Lifshits, Sobolev)

 $C = \sup_{x,z,y} \frac{q(x,y)}{q(z,y)}, \ Q(x,dy) = q(x,y)dy$

(Le Gland, Oudjane

$$C = \sup_{x,z,A} \frac{Q(x,A)}{Q(z,A)}.$$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality

Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Birkhoff contraction for nonnegative kernels: Let $\mathbf{Q} : \mathcal{M}(R^d) \to \mathcal{M}(R^d)$ s.t.: $\mu \mathbf{Q}(dy) = \int_{R^d} Q(x, dy) \mu(dx)$.

Contraction

$$ho(\mu\mathbf{Q},
u\mathbf{Q})\leq rac{C^2-1}{C^2+1}
ho(\mu,
u), ext{ with }$$

(Krasnosel'skii, Lifshits, Sobolev)

$$C = \sup_{x,z,y} \frac{q(x,y)}{q(z,y)}, \ Q(x,dy) = q(x,y)dy.$$

■ (Le Gland, Oudjane

$$C = \sup_{x,z,A} \frac{Q(x,A)}{Q(z,A)}.$$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality

Birkhoff metric

Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof part 2

Birkhoff contraction for nonnegative kernels: Let $\mathbf{Q} : \mathcal{M}(R^d) \to \mathcal{M}(R^d)$ s.t.: $\mu \mathbf{Q}(dy) = \int_{R^d} Q(x, dy) \mu(dx)$.

Contraction

$$ho(\mu\mathbf{Q},
u\mathbf{Q})\leq rac{C^2-1}{C^2+1}
ho(\mu,
u), ext{ with }$$

(Krasnosel'skii, Lifshits, Sobolev)

$$C = \sup_{x,z,y} \frac{q(x,y)}{q(z,y)}, \ Q(x,dy) = q(x,y)dy.$$

(Le Gland, Oudjane)

$$C = \sup_{x,z,A} \frac{Q(x,A)}{Q(z,A)}.$$

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation The main inequali Sketch of the proc part 2

Introduction

- Problem statement
- Historical survey

Assumptions and main result

3 Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric

Ergodic processes in \mathbb{R}^d

Reformulation of the problem, the Bayes approach

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Ergodic processes in \mathbb{R}^d , properties

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Hitting time estimates (A. Veretennikov, 1987):

For $\hat{\tau} = \inf(t \ge 0 : |X_t| \le R)$

$$\left\{\begin{array}{ll}E_x\hat{\tau}^k \leq C_m(1+|x|^m) & (\forall \ m>2k; p=1),\\E_x\exp(\alpha\hat{\tau}) \leq C\exp(c|x|) & (p=0).\end{array}\right.$$

Corollary

Let
$$\Lambda(X)_R := \sum_{k=0}^{n-1} \mathbf{1}(|X_k| \le R).$$

Then ($\forall 0 < \varepsilon < 1$ and for R large enough)

$$E_{\mu_0} \mathbb{1}(\Lambda(X)_R < \varepsilon n) \leq \begin{cases} C_m n^{-m}, & (p=1), \\ C \exp(-cn), & (p=0) \end{cases}$$

Ergodic processes in \mathbb{R}^d , properties

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Hitting time estimates (A. Veretennikov, 1987):

For $\hat{\tau} = \inf(t \ge 0 : |X_t| \le R)$

$$\begin{cases} E_x \hat{\tau}^k \leq C_m (1+|x|^m) & (\forall m > 2k; p=1), \\ E_x \exp(\alpha \hat{\tau}) \leq C \exp(c|x|) & (p=0). \end{cases}$$

Corollary

Let
$$\Lambda(X)_R := \sum_{k=0}^{n-1} \mathbf{1}(|X_k| \le R).$$

Then ($\forall 0 < \varepsilon < 1$ and for R large enough)

$$E_{\mu_0} \mathbf{1}(\Lambda(X)_R < \varepsilon n) \leq \begin{cases} C_m n^{-m}, & (p=1), \\ C \exp(-cn), & (p=0) \end{cases}$$

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation The main inequali Sketch of the proo part 2

Introduction

- Problem statement
- Historical survey

Assumptions and main result

3 Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in R^d
- Reformulation of the problem, the Bayes approach

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

The Bayes formula, part 1

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof

The classical Bayes formula, I

$$\boldsymbol{P}(\boldsymbol{X}_t \in \cdot \mid \mathcal{F}_t^{\boldsymbol{Y}}) = \frac{\widehat{\boldsymbol{E}}(\boldsymbol{1}(\boldsymbol{X}_t \in \cdot)\boldsymbol{L}_t(\overline{\boldsymbol{X}}, \overline{\boldsymbol{Y}}) \mid \mathcal{F}_t^{\boldsymbol{Y}})}{\widehat{\boldsymbol{E}}\boldsymbol{L}_t(\overline{\boldsymbol{X}}, \overline{\boldsymbol{Y}}) \mid \mathcal{F}_t^{\boldsymbol{Y}})},$$

with

$$L_t(\overline{X},\overline{Y}) = \frac{dP}{d\widehat{P}}(\overline{X},\overline{Y})$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

The Bayes formula, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Changing of measure

Using **Girsanov's transformations and integration by parts** we change the measure:

$$\frac{dP}{d\hat{P}} = \exp[\sum_{k=1}^{[t]} h^*(X_k)(Y_k - Y_{k-1}) + h^*(X_t)(Y_t - Y_{[t]})]$$

$$+\frac{1}{2}\int_0^t c(X_s,Y)\,ds],$$

with

 $c(s, x, Y) = \|(Y_s - Y_{[s]})^* \nabla h(x)\|^2 - 2(Y_s - Y_{[s]})^* \Delta h(x) - \|h\|^2(x).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey ł

Assumptior and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo The density has a special form:

$$L_n = \prod_{k=1}^n \exp[h^*(X_k)(Y_k - Y_{k-1}) + \frac{1}{2} \int_{k-1}^k c(X_s, Y) \, ds],$$

The transformed process (X, Y) (w.r.t \hat{P}) is nice:

 $\begin{cases} dX_s = (b(X_s) - (Y_s - Y_{[s]})^* \nabla h(X_s)) ds + dW_s, \\ dY_s = dB_s, \end{cases}$

with independent W and B.

- We are in the situation "Conditional distribution, particular case"
- Now we can choose the continuous (w.r.t *Y*) version of the conditional measure.

-

■ Hence, we can use the first boundary problem.

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof The density has a special form:

$$L_n = \prod_{k=1}^n \exp[h^*(X_k)(Y_k - Y_{k-1}) + \frac{1}{2} \int_{k-1}^k c(X_s, Y) \, ds],$$

The transformed process (X, Y) (w.r.t \hat{P}) is nice:

$$\begin{cases} dX_s = (b(X_s) - (Y_s - Y_{[s]})^* \nabla h(X_s)) ds + dW_s, \\ dY_s = dB_s, \end{cases}$$

with independent W and B.

- We are in the situation "Conditional distribution, particular case"
- Now we can choose the continuous (w.r.t *Y*) version of the conditional measure.

ъ

Hence, we can use the first boundary problem.

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof The density has a special form:

$$L_n = \prod_{k=1}^n \exp[h^*(X_k)(Y_k - Y_{k-1}) + \frac{1}{2} \int_{k-1}^k c(X_s, Y) \, ds],$$

The transformed process (X, Y) (w.r.t \hat{P}) is nice:

$$\begin{cases} dX_s = (b(X_s) - (Y_s - Y_{[s]})^* \nabla h(X_s)) ds + dW_s, \\ dY_s = dB_s, \end{cases}$$

with independent W and B.

- We are in the situation "Conditional distribution, particular case"
- Now we can choose the continuous (w.r.t *Y*) version of the conditional measure.

э.

■ Hence, we can use the first boundary problem.

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequali Sketch of the proc The density has a special form:

$$L_n = \prod_{k=1}^n \exp[h^*(X_k)(Y_k - Y_{k-1}) + \frac{1}{2} \int_{k-1}^k c(X_s, Y) \, ds],$$

The transformed process (X, Y) (w.r.t \hat{P}) is nice:

$$\begin{cases} dX_s = (b(X_s) - (Y_s - Y_{[s]})^* \nabla h(X_s)) ds + dW_s, \\ dY_s = dB_s, \end{cases}$$

with independent W and B.

- We are in the situation "Conditional distribution, particular case"
- Now we can choose the continuous (w.r.t *Y*) version of the conditional measure.

э.

■ Hence, we can use the first boundary problem.

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proc The density has a special form:

$$L_n = \prod_{k=1}^n \exp[h^*(X_k)(Y_k - Y_{k-1}) + \frac{1}{2} \int_{k-1}^k c(X_s, Y) \, ds],$$

The transformed process (X, Y) (w.r.t \hat{P}) is nice:

$$\begin{cases} dX_s = (b(X_s) - (Y_s - Y_{[s]})^* \nabla h(X_s)) ds + dW_s, \\ dY_s = dB_s, \end{cases}$$

with independent W and B.

- We are in the situation "Conditional distribution, particular case"
- Now we can choose the continuous (w.r.t Y) version of the conditional measure.
- Hence, we can use the first boundary problem.

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo part 2

Exact filtering algorithm via a nonlinear integral operator

$$\bar{\mu}_t(\cdot;\mu_0) = \mathbf{P}_t^{\mu_0,Y}(\cdot) =: \mu_0 \mathbf{Q}_t^Y(\cdot)$$

Its explicit form $\bar{\mu}(A; \mu_0) = c_t^{\mu_0} \int_{R^d} Q_t(x_0, A) d\mu_0(x_0)$, with

 $Q_t(x_0, A) = \widehat{E}_{x_0}(\mathbf{1}(X_t \in A)L_t(\overline{X}, \overline{Y}) \mid \mathcal{F}_t^Y)$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Q(x₀, A) can be found from the Cauchy problem.
 c^µ_t - normalizing coefficient, gives the nonlinearity, (the denominator in the Bayes formula).

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proor part 2 Exact filtering algorithm via a nonlinear integral operator

$$\bar{\mu}_t(\cdot;\mu_0) = \mathbf{P}_t^{\mu_0,Y}(\cdot) =: \mu_0 \mathbf{Q}_t^Y(\cdot)$$

Its explicit form $\bar{\mu}(A; \mu_0) = \frac{c_t^{\mu_0}}{R^d} \int_{R^d} Q_t(x_0, A) d\mu_0(x_0)$, with

 $Q_t(x_0, A) = \widehat{E}_{x_0}(\mathbf{1}(X_t \in A)L_t(\overline{X}, \overline{Y}) \mid \mathcal{F}_t^Y)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $Q_t(x_0, A)$ can be found from the Cauchy problem.

c_t^{\mu_0} - normalizing coefficient, gives the nonlinearity, (the denominator in the Bayes formula).

(

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo part 2 Exact filtering algorithm via a nonlinear integral operator

$$\bar{u}_t(\cdot;\mu_0) = \mathbf{P}_t^{\mu_0,Y}(\cdot) =: \mu_0 \mathbf{Q}_t^Y(\cdot)$$

Its explicit form $\bar{\mu}(A; \mu_0) = \frac{c_t^{\mu_0}}{R^d} \int_{R^d} Q_t(x_0, A) d\mu_0(x_0)$, with

$$\mathcal{Q}_t(x_0,\mathcal{A}) = \widehat{\mathcal{F}}_{x_0}(\mathbf{1}(X_t \in \mathcal{A}) \mathcal{L}_t(\overline{X},\overline{Y}) \mid \mathcal{F}_t^Y)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Q_t(*x*₀, *A*) can be found from the Cauchy problem.
 C^{µ0}_t - normalizing coefficient, gives the nonlinearity, (the denominator in the Bayes formula).

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proo part 2 Exact filtering algorithm via a nonlinear integral operator

$$\bar{\mu}_t(\cdot;\mu_0) = \mathbf{P}_t^{\mu_0,Y}(\cdot) =: \mu_0 \mathbf{Q}_t^Y(\cdot)$$

Its explicit form $\bar{\mu}(A; \mu_0) = C_t^{\mu_0} \int\limits_{R^d} Q_t(x_0, A) d\mu_0(x_0)$, with

$$Q_t(x_0, A) = \widehat{E}_{x_0}(\mathbf{1}(X_t \in A)L_t(\overline{X}, \overline{Y}) \mid \mathcal{F}_t^Y)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $Q_t(x_0, A)$ can be found from the Cauchy problem.

c_t^{µ0} - normalizing coefficient, gives the nonlinearity, (the denominator in the Bayes formula).

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequalit Sketch of the proor part 2 Exact filtering algorithm via a nonlinear integral operator

$$\bar{\mu}_t(\cdot;\mu_0) = \mathbf{P}_t^{\mu_0,Y}(\cdot) =: \mu_0 \mathbf{Q}_t^Y(\cdot)$$

Its explicit form $\bar{\mu}(A; \mu_0) = \frac{c_t^{\mu_0}}{R^d} \int_{R^d} Q_t(x_0, A) d\mu_0(x_0)$, with

$$Q_t(x_0, A) = \widehat{E}_{x_0}(\mathbf{1}(X_t \in A)L_t(\overline{X}, \overline{Y}) \mid \mathcal{F}_t^Y)$$

Q_t(x₀, A) can be found from the Cauchy problem.
 C_t^{µ0} - normalizing coefficient, gives the nonlinearity, (the denominator in the Bayes formula).

Main question - reformulation

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Strange conditional probability via the same operator:

$$\mathbf{P}_t^{\nu_0,Y}(\cdot) =: \nu_0 \mathbf{Q}_t^Y(\cdot) = \frac{\mathbf{c}_t^{\nu_0}}{\int\limits_{\mathbf{R}^d} Q_t(x_0, \mathbf{A}) \, d\nu_0(x_0).$$

Main question - reformulation

Frue or false:

$$\lim_{t\to\infty} E_{\mu_0} \|\mu_0 \mathbf{Q}_t^{\boldsymbol{Y}}(\cdot) - \nu_0 \mathbf{Q}_t^{\boldsymbol{Y}}(\cdot)\|_{\tau V} = 0?$$

Main question - reformulation

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, Strange conditional probability via the same operator:

$$\mathbf{P}_{t}^{\nu_{0},Y}(\cdot) =: \nu_{0}\mathbf{Q}_{t}^{Y}(\cdot) = \frac{c_{t}^{\nu_{0}}}{\int_{R^{d}}} Q_{t}(x_{0},A) \, d\nu_{0}(x_{0}).$$

Main question - reformulation

True or false:

$$\lim_{t\to\infty} E_{\mu_0} \|\mu_0 \mathbf{Q}_t^Y(\cdot) - \nu_0 \mathbf{Q}_t^Y(\cdot)\|_{\tau_V} = 0?$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequalit

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof part 2

Introduction

- Problem statement
- Historical survey
- Assumptions and main resul

Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in R^d
- Reformulation of the problem, the Bayes approach

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

4 Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Using coupling method, I A. Veretennikov, Lecture Notes, 2004

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Coupling, doubling the space

Consider **independent** couples (X, Y) and (\tilde{X}, \tilde{Y}) with initial laws $\mathcal{L}(X_0) = \mu_0$, $\mathcal{L}(\tilde{X}_0) = \nu_0$.

Doubling the operators,

New operators on the space of measures on R^{2d} $\bar{\mu}_l(A \times B; (\mu_0, \nu_0)) = c_l^{\mu_0} c_l^{\nu_0} \int Q_l(x_0, \tilde{x}_0; A \times B) d\mu_0(x_0) d\nu_0(\tilde{x}_0).$

with

 $\begin{aligned} Q_t(x_0, \tilde{x}_0; A \times B) &= \widehat{E}_{x_0, \tilde{x}_0}(1(X_t \in A, \tilde{X}_t \in B) \\ &\times L_t(X, Y) L_t(\tilde{X}, \tilde{Y}) \mid \mathcal{F}_t^{Y, \tilde{Y}}) \Big|_{\tilde{Y} = Y} \end{aligned}$

Using coupling method, I A. Veretennikov, Lecture Notes, 2004

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof,

Coupling, doubling the space

Consider **independent** couples (X, Y) and (\tilde{X}, \tilde{Y}) with initial laws $\mathcal{L}(X_0) = \mu_0$, $\mathcal{L}(\tilde{X}_0) = \nu_0$.

Doubling the operators, I

New operators on the space of measures on R^{2d} $\bar{\mu}_t(A \times B; (\mu_0, \nu_0)) =$ $c_t^{\mu_0} c_t^{\nu_0} \int_{R^{2d}} Q_t(x_0, \tilde{x}_0; A \times B) d\mu_0(x_0) d\nu_0(\tilde{x}_0).$

 $egin{aligned} \mathcal{Q}_t(x_0, ilde{x}_0;\, A imes B) &= \widehat{\mathcal{E}}_{x_0, ilde{x}_0}(\mathbf{1}(X_t\in A, ilde{X}_t\in B)\ & imes L_t(X,Y)L_t(ilde{X}, ilde{Y}) \mid \mathcal{F}_t^{Y, ilde{Y}}) igg|_{ ilde{Y}=Y} \end{aligned}$

Using coupling method, I A. Veretennikov, Lecture Notes, 2004

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes

Sketch of the proof

Coupling and separation The main inequality

Coupling, doubling the space

Consider **independent** couples (X, Y) and (\tilde{X}, \tilde{Y}) with initial laws $\mathcal{L}(X_0) = \mu_0$, $\mathcal{L}(\tilde{X}_0) = \nu_0$.

Doubling the operators, I

New operators on the space of measures on R^{2d} $\bar{\mu}_t(A \times B; (\mu_0, \nu_0)) =$ $c_t^{\mu_0} c_t^{\nu_0} \int_{R^{2d}} Q_t(x_0, \tilde{x}_0; A \times B) d\mu_0(x_0) d\nu_0(\tilde{x}_0).$

with

$$egin{aligned} egin{aligned} egi$$

Doubling the operators, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Remark. The substitutions are well defined.

Comparison of measures

The following properties hold:

- $\blacksquare \bar{\mu}_t(\boldsymbol{A}; \mu_0) = \bar{\mu}_t(\boldsymbol{A} \times \boldsymbol{R}^d; (\mu_0, \nu_0))$
- $\blacksquare \bar{\mu}_t(\boldsymbol{A};\nu_0) = \bar{\mu}_t(\boldsymbol{A}\times\boldsymbol{R}^d;(\nu_0,\mu_0))$

Comparison of distances

 $\|\bar{\mu}_t(\cdot;\mu_0) - \bar{\mu}_t(\cdot;\nu_0)\|_{\tau_V} \le \|\bar{\mu}_t(\cdot;(\mu_0,\nu_0)) - \bar{\mu}_t(\cdot;(\nu_0,\mu_0))\|_{\tau_V}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Doubling the operators, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2 Remark. The substitutions are well defined.

Comparison of measures

The following properties hold:

- $\blacksquare \bar{\mu}_t(\boldsymbol{A}; \mu_0) = \bar{\mu}_t(\boldsymbol{A} \times \boldsymbol{R}^d; (\mu_0, \nu_0))$
- $\bar{\mu}_t(A; \nu_0) = \bar{\mu}_t(A \times R^d; (\nu_0, \mu_0))$

Comparison of distances

$$\|\bar{\mu}_t(\cdot;\mu_0) - \bar{\mu}_t(\cdot;\nu_0)\|_{\tau_V} \le \|\bar{\mu}_t(\cdot;(\mu_0,\nu_0)) - \bar{\mu}_t(\cdot;(\nu_0,\mu_0))\|_{\tau_V}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Doubling the operators, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2 Remark. The substitutions are well defined.

Comparison of measures

The following properties hold:

$$\bar{\mu}_t(A; \mu_0) = \bar{\mu}_t(A \times R^d; (\mu_0, \nu_0))$$

$$\blacksquare \bar{\mu}_t(\boldsymbol{A}; \nu_0) = \bar{\mu}_t(\boldsymbol{A} \times \boldsymbol{R}^d; (\nu_0, \mu_0))$$

Comparison of distances

$$\|\bar{\mu}_t(\cdot;\mu_0) - \bar{\mu}_t(\cdot;\nu_0)\|_{\tau_V} \le \|\bar{\mu}_t(\cdot;(\mu_0,\nu_0)) - \bar{\mu}_t(\cdot;(\nu_0,\mu_0))\|_{\tau_V}$$

Separation

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approar

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Partition of unity

For fixed *R*, *n*, and any non-random vector $\delta \in \Delta = \{0, 1\}^{n+1}$ define

$$\mathbf{1}_{\delta}(X, ilde{X}):=\prod_{i=0}^{n-1}\left(\mathbf{1}\left(D_{i}
ight)
ight)^{\delta_{i}} imes\left(\mathbf{1}-\mathbf{1}\left(D_{i}
ight)
ight)^{\mathbf{1}-\delta_{i}},$$

vhere

$$D_i := \left\{ \max\left(|X_i|, |\tilde{X}_i|\right) \le R;
ight.$$
$$\left(\sup_{i \le s \le i+1} |X_s|, \sup_{i \le s \le i+1} |\tilde{X}_s|
ight) < R+1
ight\}$$

Separation

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof,

Partition of unity

For fixed *R*, *n*, and any non-random vector $\delta \in \Delta = \{0, 1\}^{n+1}$ define

$$\mathbf{1}_{\delta}(X, \tilde{X}) := \prod_{i=0}^{n-1} \left(\mathbf{1}\left(D_{i}
ight)
ight)^{\delta_{i}} imes \left(\mathbf{1}-\mathbf{1}\left(D_{i}
ight)
ight)^{\mathbf{1}-\delta_{i}},$$

where

Partition of unity, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Multiplicative decomposition

$$\mathbf{1}_{\delta}(X, ilde{X}):=\prod_{i=0}^{n-1}\mathbf{1}_{\delta_i}(D_i)$$

with

$$\mathbf{1}_{\delta_i}(D_i) = \mathbf{1}(\delta_i = 1)\mathbf{1}(D_i) + \mathbf{1}(\delta_i = 0)(1 - \mathbf{1}(D_i)).$$

Partition of unity

$$\mathbf{1} = \sum_{\delta \in \Delta} \mathbf{1}_{\delta}(X, \tilde{X})$$

Partition of unity, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approar

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Multiplicative decomposition

$$\mathbf{1}_{\delta}(X, ilde{X}):=\prod_{i=0}^{n-1}\mathbf{1}_{\delta_i}(D_i)$$

with

$$\mathbf{1}_{\delta_i}(D_i) = \mathbf{1}(\delta_i = 1)\mathbf{1}(D_i) + \mathbf{1}(\delta_i = 0)(1 - \mathbf{1}(D_i)).$$

Partition of unity

$$\mathbf{1} = \sum_{\delta \in \Delta} \mathbf{1}_{\delta}(X, ilde{X})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Separation of pairs

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2 Denote by $\#1(\delta)$ the total number of **ones** in δ and by

$$\#1(X)_R := \sum_{k=0}^{n-1} \mathbf{1}(|X_k| \le R, \sup_{k \le s \le k+1} |X_s| < R+1,)$$

The following inequalities hold:

Separation of pairs,

$$\sum_{i=1(\delta)<\varepsilon n} \mathbf{1}_{\delta}(X,\tilde{X}) \leq \mathbf{1}(\#\mathbf{1}(X)_R < \frac{1+\varepsilon}{2}n) + \mathbf{1}(\#\mathbf{1}(\tilde{X})_R < \frac{1+\varepsilon}{2}n)$$

イロン 不得 とくほ とくほ とうほ

Separation of pairs

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2 $\delta: \#$

Denote by $\#1(\delta)$ the total number of **ones** in δ and by

$$\#1(X)_R := \sum_{k=0}^{n-1} \mathbf{1}(|X_k| \le R, \sup_{k \le s \le k+1} |X_s| < R+1,)$$

The following inequalities hold:

Separation of pairs, I

$$\sum_{i=1(\delta)<\varepsilon n}\mathbf{1}_{\delta}(X,\tilde{X})\leq \mathbf{1}(\#\mathbf{1}(X)_{R}<\frac{1+\varepsilon}{2}n)+\mathbf{1}(\#\mathbf{1}(\widetilde{X})_{R}<\frac{1+\varepsilon}{2}n)$$

Separation of pairs, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof, part 2

Then ($\forall \varepsilon > \frac{1}{2}$ and for *R* large enough)

Separation of pairs,II

$$E_{\mu_0}\mathbf{1}((\#\mathbf{1}(X)_R < \varepsilon n) \leq \begin{cases} C_m n^{-m}, & (p=1), \\ C \exp(-cn), & (p=0) \end{cases}$$

The proof is based on the hitting time estimates, exponential Chebyshev's inequality and the fact that

 $q = \sup_{x:|x| \le R} P_x(\sup_{0 \le s \le +1} |X_s| \ge R+1) < 1/2.$

Separation of pairs, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approach

Sketch of the proof

Coupling and separation The main inequality Sketch of the proof.

Sketch of the proof, part 2

Then ($\forall \varepsilon > \frac{1}{2}$ and for *R* large enough)

Separation of pairs,II

$$E_{\mu_0}\mathbf{1}((\#\mathbf{1}(X)_R < \varepsilon n) \leq \begin{cases} C_m n^{-m}, & (p=1), \\ C \exp(-cn), & (p=0) \end{cases}$$

The proof is based on the hitting time estimates, exponential Chebyshev's inequality and the fact that

$$q = \sup_{x:|x|\leq R} P_x(\sup_{0\leq s\leq +1} |X_s|\geq R+1) < 1/2.$$

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equatio and diffusion processes Harnack inequalit

Eraodic processes

The Bayes approach

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2

Introduction

- Problem statement
- Historical survey
- Assumptions and main resul

Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in R^d
- Reformulation of the problem, the Bayes approach

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

4 Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

An estimate to prove

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2

Our goal is to prove the following inequality:

The main inequality

$$E_{\mu_0}\|\bar{\mu}_t(\cdot;\mu_0)-\bar{\mu}_t(\cdot;\nu_0)\|_{\tau V} \leq C \sum_{\delta \in \Delta} \kappa_{R}^{\#1(\delta)} E_{\mu_0,\nu_0} e_{[t]}^{\mathbf{Y};\delta;\mu_0,\nu_0},$$

with $u(s, x, \tilde{x})$ - the solution of the first boundary problem. s_{aaa}

An estimate to prove

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2

Our goal is to prove the following inequality:

The main inequality

$$E_{\mu_0}\|\bar{\mu}_t(\cdot;\mu_0)-\bar{\mu}_t(\cdot;\nu_0)\|_{_{TV}} \leq C\sum_{\delta\in\Delta}\kappa_{_R}^{\#1(\delta)}E_{\mu_0,\nu_0}e_{[t]}^{Y;\delta;\mu_0,\nu_0},$$

with $u(s, x, \tilde{x})$ - the solution of the first boundary problem.

First boundary problem, II

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2

First boundary problem

$$\begin{split} u_{s} + \frac{1}{2}u_{xx} + \frac{1}{2}u_{\tilde{x}\tilde{x}} \\ + (b(x) - (\psi_{s} - \psi_{0})^{*}\nabla h(x))u_{x} + (b(\tilde{x}) - (\psi_{s} - \psi_{0})^{*}\nabla h(\tilde{x}))u_{\tilde{x}} \\ + \frac{1}{2}c(x, \tilde{x}, \psi)u = 0, \\ u(1, x, \tilde{x}) = (\mathbf{1}(x \in A, \tilde{x} \in B) \\ \times \exp[h^{*}(x)(\psi_{1} - \psi_{0}) + h^{*}(\tilde{x})(\psi_{1} - \psi_{0})] \\ u(s, x, \tilde{x}) = 0, \ \forall \ 0 < s < 1, \ \max(|x|, |\tilde{x}| = R + 1), \end{split}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

with a replacement $\psi = Y$.

Separating events, 2

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof part 2 The term $e_t^{Y;\delta;\mu_0,\nu_0}$ in the main inequality is defined by:

Probability separator, definition

$$e_t^{Y;\delta;\mu_0,\nu_0} := E_{\mu_0,\nu_0}(\mathsf{1}_{\delta}(X,\tilde{X}) \mid Y,\tilde{Y})\Big|_{\tilde{Y}=Y}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark. This term will be the normalizing coefficient.

Separating events, 2

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof part 2 The term $e_t^{Y;\delta;\mu_0,\nu_0}$ in the main inequality is defined by:

Probability separator, definition

$$\left. e_t^{Y;\delta;\mu_0,
u_0} := \mathcal{E}_{\mu_0,
u_0}(\mathsf{1}_{\delta}(X, ilde{X}) \mid Y, ilde{Y}) \right|_{ ilde{Y}=Y}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark. This term will be the normalizing coefficient.

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

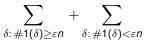
Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2 We split the sum in the main inequality ($\forall \varepsilon > 0$):



and we estimate both terms:

 $\sum_{\delta: \, \#1(\delta) \ge \varepsilon n} \kappa_{R}^{\#1(\delta)} E_{\mu_{0}} e_{n}^{Y;\delta;\mu_{0},\nu_{0}} \le \kappa_{R}^{\varepsilon n}$

 $\leq \sum_{\delta:\,\#\,1(\delta)<\varepsilon n} E_{\mu_0}\left(E_{\mu_0,\nu_0}(\mathbb{1}_{\delta}(X,\tilde{X})\mid Y,\tilde{Y})\Big|_{\tilde{Y}=Y}\right).$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

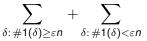
Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2 We split the sum in the main inequality ($\forall \varepsilon > 0$):



and we estimate both terms:

 $\sum_{\delta: \#1(\delta) \ge \varepsilon n} \kappa_{R}^{\#1(\delta)} E_{\mu_{0}} e_{n}^{Y;\delta;\mu_{0},\nu_{0}} \le \kappa_{R}^{\varepsilon r}$

$$\sum_{\delta: \#1(\delta) < \varepsilon n} \kappa_{R}^{\#1(\delta)} E_{\mu_{0}} \left(E_{\mu_{0},\nu_{0}}(1_{\delta}(X,\tilde{X}) \mid Y,\tilde{Y}) \Big|_{\tilde{Y}=Y} \right)$$

$$\leq \sum_{\delta: \, \# \, \mathbf{1}(\delta) < \varepsilon n} E_{\mu_0} \left(E_{\mu_0, \nu_0}(\mathbf{1}_{\delta}(X, \tilde{X}) \mid Y, \tilde{Y}) \Big|_{\tilde{Y} = Y} \right).$$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

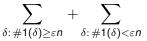
Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2 We split the sum in the main inequality ($\forall \varepsilon > 0$):



and we estimate both terms:

 $\sum_{\delta: \#1(\delta) \geq \varepsilon n} \kappa_{\scriptscriptstyle R}^{\#1(\delta)} E_{\mu_0} \boldsymbol{e}_{\scriptscriptstyle D}^{\boldsymbol{Y};\delta;\mu_0,\nu_0} \leq \kappa_{\scriptscriptstyle R}^{\varepsilon n}$

 $\sum_{R} = \kappa_{R}^{\#1(\delta)} E_{\mu_{0}} \left(E_{\mu_{0},\nu_{0}}(1_{\delta}(X,\tilde{X}) \mid Y,\tilde{Y}) \Big|_{\tilde{v}} \right)$

 $\leq \sum_{\mu_0} \left| E_{\mu_0,\nu_0}(\mathbf{1}_{\delta}(X,\tilde{X}) \mid Y,\tilde{Y}) \right|_{\mathfrak{s}_{\mu_0}} \right).$

・ロット (雪) (日) (日) (日)

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

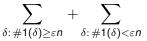
Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2 We split the sum in the main inequality ($\forall \varepsilon > 0$):



and we estimate both terms:

 $\sum_{\delta: \#1(\delta) \geq \varepsilon n} \kappa_{R}^{\#1(\delta)} \mathcal{E}_{\mu_{0}} \boldsymbol{e}_{n}^{\boldsymbol{Y};\delta;\mu_{0},\nu_{0}} \leq \kappa_{R}^{\varepsilon n}$

$$\sum_{\delta: \#1(\delta) < \varepsilon n} \kappa_{R}^{\#1(\delta)} E_{\mu_{0}} \left(E_{\mu_{0},\nu_{0}}(1_{\delta}(X,\tilde{X}) \mid Y,\tilde{Y}) \Big|_{\tilde{Y}=Y} \right)$$

$$\leq \sum_{\delta: \, \# \, \mathbf{1}(\delta) < \varepsilon n} \, \mathcal{E}_{\mu_0} \left(\mathcal{E}_{\mu_0, \nu_0}(\mathbf{1}_{\delta}(X, \tilde{X}) \mid Y, \, \tilde{Y}) \Big|_{\tilde{Y}=Y} \right).$$

Ergodic Filters

Veretennikov Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proo part 2 We can finish the proof:

+

$$egin{aligned} & E_{\mu_0}\left(E_{\mu_0,
u_0}\left(\sum_{\delta:\,\#1(\delta)$$

(because X does not depend on \tilde{Y} , nor \tilde{X} depends on Y).

■ the inequality "separation of pairs" has been used.

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof part 2

We estimate the first term

$$E_{\mu_0}\left(E_{\mu_0}\left(1(\#1(X)_R < \frac{1+\varepsilon}{2}n) \mid Y\right)\right)$$
$$= E_{\mu_0}\left(1(\#1(X)_R < \frac{1+\varepsilon}{2}n)\right).$$

イロト 不得 トイヨト イヨト

3

we can use the "Separation of pairs, II".

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approa

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof part 2

We estimate the first term

$$\begin{split} E_{\mu_0}\left(E_{\mu_0}\left(1(\#1(X)_R < \frac{1+\varepsilon}{2}n) \mid Y\right)\right) \\ &= E_{\mu_0}\left(1(\#1(X)_R < \frac{1+\varepsilon}{2}n)\right). \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

we can use the "Separation of pairs, II".

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approar

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof part 2

Next, we estimate the other term, using the **absolute continuity of the initial measures**:

$$E_{\mu_0}\left(E_{\nu_0}\left(1(\#1(\tilde{X})_R < \frac{1+\varepsilon}{2}n) \mid \tilde{Y}\right)\Big|_{\tilde{Y}=Y}\right)$$

$$\leq C_2 E_{\nu_0}\left(E_{\nu_0}\left(1(\#1(\tilde{X})_R < \frac{1+\varepsilon}{2}n) \mid \tilde{Y}\right)\Big|_{\tilde{Y}=Y}\right)$$

$$= C_2 E_{\nu_0}\left(1(\#1(\tilde{X})_R < \frac{1+\varepsilon}{2}n)\right),$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Again, the Separation of pairs, II.

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation: and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

2

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof part 2 Next, we estimate the other term, using the **absolute continuity of the initial measures**:

$$egin{aligned} & E_{\mu_0}\left(E_{
u_0}\left(1(\#1(ilde{X})_R < rac{1+arepsilon}{2}n) \mid ilde{Y}
ight)\Big|_{ ilde{Y}=Y}
ight) \ & \leq C_2\,E_{
u_0}\left(E_{
u_0}\left(1(\#1(ilde{X})_R < rac{1+arepsilon}{2}n) \mid ilde{Y}
ight)\Big|_{ ilde{Y}=Y}
ight) \ & = C_2\,E_{
u_0}\left(1(\#1(ilde{X})_R < rac{1+arepsilon}{2}n)
ight), \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Again, the **Separation of pairs, II.**

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equation: and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approar

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof part 2 Next, we estimate the other term, using the **absolute continuity of the initial measures**:

$$egin{aligned} & E_{\mu_0}\left(E_{
u_0}\left(1(\#1(ilde{X})_R < rac{1+arepsilon}{2}n) \mid ilde{Y}
ight)\Big|_{ ilde{Y}=Y}
ight) \ & \leq C_2\,E_{
u_0}\left(E_{
u_0}\left(1(\#1(ilde{X})_R < rac{1+arepsilon}{2}n) \mid ilde{Y}
ight)\Big|_{ ilde{Y}=Y}
ight) \ & = C_2\,E_{
u_0}\left(1(\#1(ilde{X})_R < rac{1+arepsilon}{2}n)
ight), \end{aligned}$$

Again, the Separation of pairs, II.

Outline

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptior and main result

Auxiliaries

Parabolic equatio and diffusion processes Harnack inequalit

Ergodic processes

The Bayes approach

Sketch of the proof

Coupling and separation

Sketch of the proof,

Introduction

- Problem statement
- Historical survey
- Assumptions and main resul

Auxiliaries for the proof

- Parabolic equations and diffusion processes
- Harnack inequality
- Birkhoff metric
- Ergodic processes in R^d
- Reformulation of the problem, the Bayes approach

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

4 Sketch of the proof

- Coupling and separation
- The main inequality
- Sketch of the proof, part 2

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequa

Sketch of the proof, part 2

How can we prove the main inequality?

Define new **linear** operators on the space of non-normalized measures on \mathbb{R}^{2d}

$$\mu_t(A \times B; (\mu_0, \nu_0)) = \int_{B^{2d}} Q_t(x_0, \tilde{x}_0; A \times B) \, d\mu_0(x_0) \, d\nu_0(\tilde{x}_0).$$

with the same kernel Q_t :

$$\begin{aligned} Q_t(x_0, \tilde{x}_0; A \times B) &= \widehat{E}_{x_0, \tilde{x}_0}(\mathbf{1}(X_t \in A, \tilde{X}_t \in B) \\ & \times L_t(X, Y) L_t(\tilde{X}, \tilde{Y}) \mid \mathcal{F}_t^{Y, \tilde{Y}}) \Big|_{\widetilde{Y} = Y} \end{aligned}$$

We have

$$\bar{\mu}_t(A \times B; (\mu_0, \nu_0)) = \mathbf{C}_t^{\mu_0} \mathbf{C}_t^{\nu_0} \mu_t(A \times B; (\mu_0, \nu_0))$$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation The main inequa

Sketch of the proof, part 2 How can we prove the main inequality? Define new **linear** operators on the space of non-normalized measures on \mathbb{R}^{2d}

$$\mu_t(\boldsymbol{A}\times\boldsymbol{B};(\mu_0,\nu_0))=\int_{\boldsymbol{R}^{2d}}Q_t(\boldsymbol{x}_0,\tilde{\boldsymbol{x}}_0;\,\boldsymbol{A}\times\boldsymbol{B})\,d\mu_0(\boldsymbol{x}_0)\,d\nu_0(\tilde{\boldsymbol{x}}_0).$$

with the same kernel Q_t :

$$\begin{aligned} Q_t(x_0, \tilde{x}_0; A \times B) &= \widehat{E}_{x_0, \tilde{x}_0}(\mathbf{1}(X_t \in A, \tilde{X}_t \in B) \\ & \times L_t(X, Y) L_t(\tilde{X}, \tilde{Y}) \mid \mathcal{F}_t^{Y, \tilde{Y}}) \Big|_{\widetilde{Y} = Y} \end{aligned}$$

We have

$$\bar{\mu}_t(A \times B; (\mu_0, \nu_0)) = \mathbf{C}_t^{\mu_0} \mathbf{C}_t^{\nu_0} \mu_t(A \times B; (\mu_0, \nu_0))$$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation The main inequa

Sketch of the proof, part 2 How can we prove the main inequality? Define new **linear** operators on the space of non-normalized measures on \mathbb{R}^{2d}

$$\mu_t(\boldsymbol{A}\times\boldsymbol{B};(\mu_0,\nu_0))=\int_{\boldsymbol{R}^{2d}}Q_t(\boldsymbol{x}_0,\tilde{\boldsymbol{x}}_0;\,\boldsymbol{A}\times\boldsymbol{B})\,d\mu_0(\boldsymbol{x}_0)\,d\nu_0(\tilde{\boldsymbol{x}}_0).$$

with the same kernel Q_t :

$$egin{aligned} egin{aligned} \mathcal{Q}_t(x_0, ilde{x}_0;oldsymbol{A} imes \mathcal{B}) &= \widehat{\mathcal{E}}_{x_0, ilde{x}_0}(oldsymbol{1}(X_t\in \mathcal{A}, ilde{X}_t\in \mathcal{B}) \ & imes L_t(X,Y)L_t(ilde{X}, ilde{Y}) \mid \mathcal{F}_t^{Y, ilde{Y}}) \Bigert_{ ilde{Y}=Y} \end{aligned}$$

Ne have

$$\bar{\mu}_t(A \times B; (\mu_0, \nu_0)) = \boldsymbol{c}_t^{\mu_0} \boldsymbol{c}_t^{\nu_0} \mu_t(A \times B; (\mu_0, \nu_0))$$

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equation: and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approar

Sketch of the proof

Coupling and separation

Sketch of the proof, part 2 How can we prove the main inequality? Define new **linear** operators on the space of non-normalized measures on \mathbb{R}^{2d}

$$\mu_t(A \times B; (\mu_0, \nu_0)) = \int_{\mathcal{H}^{2d}} Q_t(x_0, \tilde{x}_0; A \times B) \, d\mu_0(x_0) \, d\nu_0(\tilde{x}_0).$$

with the same kernel Q_t :

$$egin{aligned} egin{aligned} \mathcal{Q}_t(x_0, ilde{x}_0;oldsymbol{A} imes \mathcal{B}) &= \widehat{\mathcal{E}}_{x_0, ilde{x}_0}(oldsymbol{1}(X_t\in\mathcal{A}, ilde{X}_t\in\mathcal{B}) \ & imes L_t(X,Y)L_t(ilde{X}, ilde{Y}) \mid \mathcal{F}_t^{Y, ilde{Y}}) \Bigert_{ ilde{Y}=Y} \end{aligned}$$

We have

$$\bar{\mu}_t(\boldsymbol{A}\times\boldsymbol{B};(\mu_0,\nu_0)) = \boldsymbol{c}_t^{\mu_0}\boldsymbol{c}_t^{\nu_0}\mu_t(\boldsymbol{A}\times\boldsymbol{B};(\mu_0,\nu_0))$$

Separating events, 2 New operators, 3

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption: and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approad

Sketch of the proof

Coupling and separation

Sketch of the proof, part 2 Using the partition of unit we obtain the following decomposition:

$$\mu_t(oldsymbol{A} imes oldsymbol{B};(\mu_0,
u_0)) = \sum_{\delta\in\Delta} \mu_t^\delta(oldsymbol{A} imes oldsymbol{B};(\mu_0,
u_0))$$

with

 $\mu_t^{\delta}(\boldsymbol{A}\times\boldsymbol{B};(\mu_0,\nu_0))=\int_{\boldsymbol{H}^{2d}}\boldsymbol{Q}_t^{\delta}(\boldsymbol{x}_0,\tilde{\boldsymbol{x}}_0;\boldsymbol{A}\times\boldsymbol{B})\,d\mu_0(\boldsymbol{x}_0)\,d\nu_0(\tilde{\boldsymbol{x}}_0).$

and with the kernel Q_t^{δ} :

 $egin{aligned} Q_t^\delta(x_0, ilde x_0;\, A imes B) &= \widehat{E}_{x_0, ilde x_0}(\mathbf{1}(X_t\in A, ilde X_t\in B)\mathbf{1}_\delta(oldsymbol{X}, ilde X)\ & imes L_t(X,Y)L_t(ilde X, ilde Y)\mid \mathcal{F}_t^{Y, ilde Y})\Bigert_{Y=Y} \end{aligned}$

・ロット (雪) ・ (日) ・ (日)

Separating events, 2 New operators, 3

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation

Sketch of the proof, part 2

Using the partition of unit we obtain the following decomposition:

$$\mu_t(oldsymbol{A} imes oldsymbol{B};(\mu_0,
u_0)) = \sum_{\delta\in\Delta}\mu_t^\delta(oldsymbol{A} imes oldsymbol{B};(\mu_0,
u_0))$$

with

$$\mu_t^{\delta}(\boldsymbol{A}\times\boldsymbol{B};(\mu_0,\nu_0)) = \int_{\boldsymbol{R}^{2d}} \boldsymbol{Q}_t^{\delta}(\boldsymbol{x}_0,\tilde{\boldsymbol{x}}_0;\boldsymbol{A}\times\boldsymbol{B}) \, \boldsymbol{d}\mu_0(\boldsymbol{x}_0) \, \boldsymbol{d}\nu_0(\tilde{\boldsymbol{x}}_0).$$

and with the kernel Q_t^{δ} :

$$\begin{aligned} Q_t^\delta(x_0, \tilde{x}_0; A \times B) &= \widehat{E}_{x_0, \tilde{x}_0}(\mathbf{1}(X_t \in A, \tilde{X}_t \in B) \mathbf{1}_{\delta}(X, \tilde{X}) \\ & \times L_t(X, Y) L_t(\tilde{X}, \tilde{Y}) \mid \mathcal{F}_t^{Y, \tilde{Y}}) \Big|_{\widetilde{Y} = Y} \end{aligned}$$

Probability separator, again

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof, part 2

We see that the normalizing coefficient is exactly the $e_t^{Y;\delta;\mu_0,\nu_0}$:

Probability separator, II

$$egin{aligned} e_t^{Y;\delta;\mu_0,
u_0} &:= E_{\mu_0,
u_0}(1_{\delta}(X, ilde{X}) \mid Y, ilde{Y}) \Big|_{ ilde{Y}=Y} \ &= c_t^{\mu_0} c_t^{
u_0} \mu_t^{\delta}(R^{2d};(\mu_0,
u_0)) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Recursion, I

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation

Sketch of the proof, part 2 Using the Markov property of X_t we find the recursion (with $Z_t = (X_t, \widetilde{X}_t)$):

$$\mu_n^{\delta_n}(dz_n) = \int_{R^2d} Q^{\delta_n}(z_{n-1}, dz_n) d\mu_{n-1}^{\delta_{n-1}}(z_{n-1}),$$

with

$$Q^{\delta_n}(z_{n-1}, D) = E_{z_{n-1}} \mathbf{1}(Z_n \in D) \mathbf{1}_{\delta_n}(D_n) \exp[\int_{n-1}^n c(s, Z_s, Y) \, ds]$$

with

$$D_n := \left(|Z_{n-1}| \leq R, \sup_{n-1 \leq s \leq n} |Z_s| < R+1
ight),$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Comparison of distance,2

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof, part 2 We can estimate the total variation norm:

$$\begin{split} \|\bar{\mu}_{t}(\cdot;(\mu_{0},\nu_{0})) - \bar{\mu}_{t}(\cdot;(\nu_{0},\mu_{0}))\|_{TV} \\ &\leq c_{t}^{\mu_{0}}c_{t}^{\nu_{0}}\sum_{\delta\in\Delta}\|\mu_{t}^{\delta}(\mu_{0},\nu_{0}) - \mu_{t}^{\delta}(\nu_{0},\mu_{0})\|_{TV} \\ &= \sum_{\delta\in\Delta}e_{n}^{Y;\delta;\mu_{0},\nu_{0}}\|\hat{\mu}_{t}^{\delta}(\mu_{0},\nu_{0}) - \hat{\mu}_{t}^{\delta}(\nu_{0},\mu_{0})\|_{TV} \end{split}$$

with normalization

1

$$\hat{\mu}_t^{\delta}(
u_0,\mu_0) = rac{\mu_t^{\delta}(\mu_0,
u_0)}{\mu_t^{\delta}({\mathcal R}^{{ extsf{2d}}};\mu_0,
u_0)}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Comparison of distance,2

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumption and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof, part 2 We can estimate the total variation norm:

$$\begin{split} \|\bar{\mu}_{t}(\cdot;(\mu_{0},\nu_{0})) - \bar{\mu}_{t}(\cdot;(\nu_{0},\mu_{0}))\|_{TV} \\ &\leq \boldsymbol{c}_{t}^{\mu_{0}}\boldsymbol{c}_{t}^{\nu_{0}}\sum_{\delta\in\Delta} \|\mu_{t}^{\delta}(\mu_{0},\nu_{0}) - \mu_{t}^{\delta}(\nu_{0},\mu_{0})\|_{TV} \\ &= \sum_{\delta\in\Delta} \boldsymbol{e}_{n}^{Y;\delta;\mu_{0},\nu_{0}} \|\hat{\mu}_{t}^{\delta}(\mu_{0},\nu_{0}) - \hat{\mu}_{t}^{\delta}(\nu_{0},\mu_{0})\|_{TV} \end{split}$$

with normalization

$$\hat{\mu}_t^{\delta}(
u_0,\mu_0) = rac{\mu_t^{\delta}(\mu_0,
u_0)}{\mu_t^{\delta}(\mathcal{R}^{\mathsf{2d}};\mu_0,
u_0)}$$

Using the Birkhoff metric, 1

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approac

Sketch of the proof

Coupling and separation

The main inequality

Sketch of the proof, part 2

Using the properties of the Birkhoff metric we see that

Birkhoff metric, 1st property.

$$\|\hat{\mu}_t^{\delta}(\mu_0,\nu_0) - \hat{\mu}_t^{\delta}(\nu_0,\mu_0)\|_{\tau \nu} \le \rho(\hat{\mu}_t^{\delta}(\mu_0,\nu_0);\hat{\mu}_t^{\delta}(\nu_0,\mu_0)).$$

Using the Birkhoff metric, 2

Ergodic Filters

Veretennikov, Kleptsyna

Introduction Problem statement Historical survey

Assumptions and main result

Auxiliaries

Parabolic equations and diffusion processes Harnack inequality Birkhoff metric Ergodic processes The Bayes approact

Sketch of the proof

Coupling and separation

Sketch of the proof,

and that

Birkhoff metric, 2nd property.

$$egin{aligned} &
ho(\hat{\mu}_n^{\delta}(\mu_0,
u_0);\hat{\mu}_n^{\delta}(
u_0,\mu_0))\ &\equiv
ho\left(\mu_n^{\delta}(\mu_0,
u_0);\mu_n^{\delta}(
u_0,\mu_0)
ight)\ &\leq\kappa_R^{\delta_n}
ho\left(\mu_{n-1}^{\delta}(\mu_0,
u_0);\mu_{n-1}^{\delta}(
u_0,\mu_0)
ight)\ &\leq C\kappa_R^k, \end{aligned}$$

with

$$k = \#1(\delta)$$

QED

э

・ロット (雪) (日) (日)

which gives the desired inequality.