
History versus Expectations
in Large Population Binary Games

Daisuke Oyama

Graduate School of Economics, Hitotsubashi University, Japan

Paris School of Economics

http://www.econ.hit-u.ac.jp/˜oyama/

Roscoff, November 24-26, 2008



Introduction

Talk about
! a dynamic game with a continuum of players where

! a fixed static non-atomic game is played repeatedly
(with perfect information; in continuous time),

! no single player has a strategic impact,
! players incur adjustment costs when changing actions.

It will be shown that

! There is a unique equilibrium outcome of the static game
that is “stable” in the dynamic game.

A “potential method” is employed, where

! Equilibrium paths of the dynamic game
(“multi-person optimization”) are translated into
solutions of an optimal control problem
(“single-person optimization”).



The dynamics discussed here was considered by a famous person...
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Paul Krugman

! International trade + Economic geography
! Krugman, “Increasing Returns and Economic Geography,”

Journal of Political Economy 99 (1991).

Monopolistic competition model with mobile labor.
Two regions, myopic migrants.

Agglomeration versus dispersion, multiple equilibria.

! Forward-looking expectations
! Krugman, “History versus Expectations,”

Quarterly Journal of Economics 106 (1991).

Occupation choice between two sectors with adjustment costs.
Forward-looking workers.
Discusses some properties of the equilibrium dynamics.

Error corrected by Fukao and Benabou (1993).



This Talk

Oyama, D.,
“History versus Expectations in Economic Geography Reconsidered,”
forthcoming in Journal of Economic Dynamics and Control.

! Economic geography model with forward-looking migrants.

! Stability of equilibrium outcomes under Krugman-dynamics.
Equilibrium selection result based on a “potential method”.

In this talk, I will talk about the dynamics part of this work, which
applies to any social interaction situation (with binary actions).



Contents

1. Large population games with two actions

2. Krugman dynamics

3. Stability results

4. Extension to many-action games with potential



Large Population Games

! There are a continuum of players.

! Each player has two actions, 0 and 1.

! x : fraction of players playing action 1.
x = 1: the state where every player is playing 1;

x = 0: the state where every player is playing 0.

! fi (x): payoff function for action i = 0, 1
when fraction x of players play 1 (hence 1− x play 0).
(fi : [0, 1] → R is assumed to be Lipschitz continuous.)

! (f0, f1) defines a population game.

! Denote

f (x) = f1(x)− f0(x).



Examples

! Economic geography (as in Krugman (1991, JPE)):
Actions are regions to live in.

! Sector choice and industrialization
(as in Krugman (1991, QJE), Matsuyama (1991, QJE)):
Actions are sectors to work for.

! Investment:
Action 1: to invest, Action 0: not to invest.

! Search in a decentralized market:
Action 1: to search for trading partner,
Action 0: not to search.

! Transportation:
Actions are routes to use.

! Random-matching of a normal form game:
In this case, fi (x) is lienar in x .



Nash Equilibria

Recall f (x) = f1(x)− f0(x). (x : fraction who play action 1)

! x∗ ∈ [0, 1] is a Nash equilibrium state of (f0, f1) if

x∗ > 0 ⇒ f (x∗) ≥ 0, and x∗ < 1 ⇒ f (x∗) ≤ 0.

(cf. Wardrop equilibrium)

! x∗ ∈ [0, 1] is a strict Nash equilibrium state of (f0, f1) if

x∗ > 0 ⇒ f (x∗) > 0, and x∗ < 1 ⇒ f (x∗) < 0.

! Assumption. There are finitely many equilibrium states.

A sufficient condition: f is real analytic (not identically zero).



Potential Function

(Monderer and Shapley 1996 GEB, Sandholm 2001 JET, 2008, Ui 2008)

Recall f (x) = f1(x)− f0(x). (x : fraction who play action 1)

Definition.
F : [0, 1] → R is said to be a potential function of (f0, f1) if

dF

dx
(x) = f (x). (∗)

! Consider the maximization problem:
Maximize F (x) subject to x ∈ [0, 1].

! Then:
x∗: solution ⇒ x∗: equilibrium state (but not vice versa).



Multiple Equilibria

Recall f (x) = f1(x)− f0(x). (x : fraction who play action 1)

! We consider the case where f ′ > 0 and f (0) < 0 < f (1),
so that x = 0 and x = 1 are both strict equilibrium states.

! In this case, potential function F becomes convex.

! We assume that F (0) (= F (1),
so that F has a unique maximizer (x = 0 or x = 1).

! Note:
The assumption that f ′ > 0 is made only to simplify the presentation.
Our main result will hold as long as F has a unique global maximizer x∗

and x∗ is isolated from other critical points of F .



Modeling Frictions

Future can be important of present decision when

! players incur adjustment costs that depend on others’ decision
⇒ option to wait
· · · Krugman (1991, QJE), where cost is given by |ẋ(t)|/γ;

or

! once a player chooses an action,
he has to stick to that action for some time interval
· · · Matsuyama (1991, QJE), Matsui and Matsuyama (1995, JET),

where action revision opportunities follow a Poisson process.



Krugman Dynamics

! A path x(·) : [0,∞) → [0, 1] is said to be feasible
if continuous and piecewise C 1.

! (t1, t2) ⊂ [0,∞) is called an interior interval of x(·) if
x(t) ∈ (0, 1) for all t ∈ (t1, t2).

! [t1, t2] ⊂ [0,∞) is called a boundary interval of x(·) if
x(t) = 0, 1 for all t ∈ [t1, t2].

! Players can change actions at any time instant
with cost |ẋ(t)|/γ (γ > 0).

(ẋ(t) = lims↘t ẋ(s) if not differentiable.)



Defining Equilibrium Paths

Given a feasible path x(·),
the value of playing action i = 0, 1 satisfies

Vi (t) = sup
{t1,...,tn}⊂[t,t+∆t)

{∫ t1

t
e−θ(s−t)fi (x(s)) ds

+
n∑

k=1

(∫ tk+1

tk

e−θ(s−t)fik (x(s)) ds − e−θ(tk−t) |ẋ(tk)|
γ

)

+ e−θ∆tVin(t + ∆t)

}
,

where ik ∈ {0, 1} \ {ik−1} (i0 = i) and tn+1 = t + ∆t.
θ > 0: (common) discount rate.



Equilibrium Paths

If x(·) is an equilibrium path, then

! on interior intervals,
indifferent between changing actions and waiting:

ẋ(t) ≤ 0 ⇒ V0(t)−
|ẋ(t)|

γ
= V1(t),

ẋ(t) ≥ 0 ⇒ V1(t)−
|ẋ(t)|

γ
= V0(t);

! on boundary intervals,
players can change actions with zero cost:

V0(t) = V1(t).



Characterization

x(·) is an equilibrium path from x0 ∈ [0, 1] iff x(0) = x0, and
∃ q : [0,∞) → R: bounded, continuous and piecewise differentiable
such that for all t ≥ 0,

! if t is in an interior interval, then

ẋ(t) = γq(t), (1)

q̇(t) = θq(t)− f (x(t)), (2)

! if t is in a boundary interval, then

q(t) = 0. (3)

Here,

q(t) = V1(t)− V0(t).



“Overlap”

ẋ(t) = γq(t),
q̇(t) = θq(t)− f (x(t)).
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Figure 1: Phase portraits

are multiple equilibrium paths, some leading to x = 1 and others to x = 0.
If the overlap [x, x] is strictly contained in [0, 1] (i.e., 0 < x and x < 1) as in
Figure 1(a), then from a neighborhood of each strict equilibrium state x = i
(i = 0, 1), there is a unique equilibrium path, which leads to x = i; that is,
both states x = 0 and x = 1 are absorbing.

Intuitively, as the friction becomes smaller, expectations become more
likely to be decisive, thus making the overlap wider. What Theorem 4.1 tells
us is that the overlap must reach x = 0, the endpoint of [0, 1] opposite to
the potential maximizer x = 1, for small frictions, while Theorem 4.2 says
that, however small the friction is, the overlap never contains the potential
maximizer x = 1 and thus never fills the entire space [0, 1].12 The phase
portrait for this situation is depicted in Figure 1(b), where the overlap is
the interval [0, x]. For any initial condition, there is an equilibrium trajectory

12This is true also for δ = 0, in which case x is given by F (x) = F (0).

12

[x , x ] is called the “overlap”.
Adjustment cost/discount rate smaller ⇒ “overlap” larger.



Stability Concepts

! Equilibrium state i∗ ∈ {0, 1} is absorbing if
∃ neighborhood of i∗, ∀ equilibrium path converges to i∗.
(i.e., The overlap does not reach i∗.)

! Equilibrium state i∗ ∈ {0, 1} is globally accessible if
∀ initial distribution, ∃ equilibrium path that converges to i∗.
(i.e., The overlap reaches −i∗.)

If an absorbing state is also globally accessible,

then it is the unique absorbing state.

Interested in a state that is absorbing and globally accessible
for small friction θ/

√
γ.

(θ: discount rate; |ẋ(t)|/γ: adjustment cost.)



Main Result

Theorem.
If {x∗} = maxx∈[0,1] F (x),
⇒ x∗ is absorbing and globally accessible when θ/

√
γ is small.

F : potential function ( d
dx F (x) = f (x)).
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are multiple equilibrium paths, some leading to x = 1 and others to x = 0.
If the overlap [x, x] is strictly contained in [0, 1] (i.e., 0 < x and x < 1) as in
Figure 1(a), then from a neighborhood of each strict equilibrium state x = i
(i = 0, 1), there is a unique equilibrium path, which leads to x = i; that is,
both states x = 0 and x = 1 are absorbing.

Intuitively, as the friction becomes smaller, expectations become more
likely to be decisive, thus making the overlap wider. What Theorem 4.1 tells
us is that the overlap must reach x = 0, the endpoint of [0, 1] opposite to
the potential maximizer x = 1, for small frictions, while Theorem 4.2 says
that, however small the friction is, the overlap never contains the potential
maximizer x = 1 and thus never fills the entire space [0, 1].12 The phase
portrait for this situation is depicted in Figure 1(b), where the overlap is
the interval [0, x]. For any initial condition, there is an equilibrium trajectory

12This is true also for δ = 0, in which case x is given by F (x) = F (0).

12

In the figure, x = 1 is absorbing and globally accessible.



Proof Strategy

Follow the proof strategy of Hofbauer and Sorger (1999, JET),
who study stability of perfect foresight dynamics due to
Matsui and Matsuyama (1995, JET).

! Global accessibility:
! Consider an associated optimal control problem.
! Its solution trajectories are equilibrium paths.
! Its solution trajectories visit the potential maximizer x∗.
! + Absorption ⇒ global accessibility.

! Absorption:
! The maximized Hamiltonian works as a Lypunov function.

! Notice the state variable inequality constraint, 0 ≤ x(t) ≤ 1.
x(·) may hit the boundary of the state space [0, 1].



Proof of Global Accessibility

Consider the optimal control problem (F : potential function):

Max J(x(·), u(·)) =

∫ ∞

0
e−θt

(
F (x(t))− u(t)2

2γ

)
dt (4a)

s.t. ẋ(t) = u(t) (4b)

x(t) ≥ 0 (4c)

1− x(t) ≥ 0 (4d)

x(0) = x0. (4e)

! Lemma 1. A solution exists for each x0 ∈ [0, 1].

! Lemma 2. (x∗(·), u∗(·)): solution ⇒ x∗(·): equilibrium path.
(The objective function is a “dynamic version of potential function”.)

! Lemma 3. x∗(·) visits neighborhoods of the unique max of F
if θ/

√
γ is small. (“Visit lemma”)



Optimality Conditions (1/2)

Necessary conditions for optimality (Hartl et al. (1995, SIAM Review)):

H(x , u, q) = F (x)− u2

2γ
+ qu,

L(x , u, q, ν0, ν1) = H(x , u, q) + ν0x + ν1(1− x).

∃ q(·): piecewise absolutely continuous,
∃ ν0(·), ν1(·): piecewise continuous such that

Hu(x(t), u(t), q(t)) = −u(t)

γ
+ q(t) = 0, (5)

q̇(t) = θq(t)− Lx(x(t), u(t), q(t), ν0(t), ν1(t))

= θq(t)− f (x(t))− ν0(t) + ν1(t), (6)

ν0(t) ≥ 0, ν0(t)x(t) = 0, (7)

ν1(t) ≥ 0, ν1(t)(1− x(t)) = 0, (8)

(cont...)



Optimality Conditions (2/2)

Jump conditions for adjoint q(·):
for any time τ in a boundary interval and for any contact time τ ,

q(τ−) = q(τ+) + η0(τ)− η1(τ), (9)

η0(τ) ≥ 0, η0(τ)x(τ) = 0, (10)

η1(τ) ≥ 0, η1(τ)(1− x(τ)) = 0 (11)

for some η0(τ), η1(τ) for each τ .

Show
q(τ−) = q(τ+) = 0 (and hence q(·) is continuous).

“Visit Lemma” 3 + Absorption ⇒ Global accessibility. (Q.E.D.)



Proof of Absorption

Maximized Hamiltonian:

H∗(x , q) = max
u

H(x , u, q) = F (x) +
γ

2
q2.

! Lemma 4.

d

dt
H∗(x(t), q(t)) ≥ 0.

! Lemma 5. Let x(·) be an equilibrium path from x0,
and x̂ ∈ [0, 1] an accumulation point of x(·).
⇒ F (x̂) ≥ F (x0); and x̂ is a critical point of F .

If x0 is in a neighborhood of the unique max x∗ of F
in which x∗ is the unique critical point,
⇒ x(·) must converge to x∗. (Q.E.D.)



Comments on Extension to Many-Action Games

! Large population potential games.

! The dynamics:
Formulation of adjustment costs.

! Idea of proof of global accessibility and absorption.

! Another formulation of the dynamics:
Introduction of heterogeneity in preferences
(to prevent the dynamics from hitting the boundary of
the state space).

Cf. Perturbed best response dynamics (Fudenberg and Levine;
Hofbauer and Sandholm).



Potential Games

(Monderer and Shapley 1996, Sandholm 2001, 2008, Ui 2008)

A = {1, . . . , n}: set of actions.
fi (x): payoff for action i ∈ A,
where x ∈ ∆(A) = {x = (x1, . . . , xn) ∈ Rn | xi ≥ 0,

∑
i∈A xi = 1}.

Definition. F : ∆̄ → R is said to be a potential function of (fi )i∈A

if

∂F

∂xi
(x)− ∂F

∂xj
(x) = fi (x)− fj(x) ∀ i , j ∈ A, ∀ x ∈ ∆(A). (∗)

(∆̄ ⊂ Rn: a full-dimensional subset of Rn containing ∆(A).)

! Maximize F (x) subject to x ∈ ∆(A).

x∗: solution ⇒ x∗: equilibrium state (but not vice versa).



Examples of Potential Game

! Any population game with two actions.

! Random-matching of a Common interest game/Team game:
Games where for any action profile, players get a same payoff.

! Biology: Fisher (1930).

! Transportation economics:
Beckmann, McGuire, and Winsten (1956).



Krugman Dynamics with Many Actions (1/2)

uji (t): (net) flow from action j to action i , where uij = −uji , and

ẋi (t) =
∑

j '=i uji (t).

Adjustment cost when changing from j to i : |uji (t)|/γ.



Krugman Dynamics with Many Actions (2/2)

! The indifference conditions:

uji (t) ≥ 0 ⇒ Vi (t)− uji (t)/γ = Vj(t),

uji (t) ≤ 0 ⇒ Vj(t) + uji (t)/γ = Vi (t).

! Equilibrium dynamics:

ẋi (t) = γ
{

(n − 1)Vi (t)−
∑

j '=i Vj(t)
}

,

V̇i (t) = θVi (t)− fi (x(t)),

+ boundary condition
(if ẋ(t) = 0 in some time interval, then V1(t) = · · · = Vn(t) there.)



Potential Method

Suppose that the game (fi )i∈A has a potential function F .

! The associated optimal control problem:

Max

∫ ∞

0
e−θt

(
F (x(t))− 1

2

∑
i

∑
j '=i

uji (t)2

2γ

)
dt

s.t. ẋi (t) =
∑

j '=i uji (t)

uij(t) = −uji (t)∑
i xi (t) = 1

xi (t) ≥ 0

x(0) = x0.

The same technique as before should work...



Another Possible Formulation of Dynamics

! Introduce heterogeneity in players w.r.t. their payoffs:
For a player with “type” (αi )i∈A ⊂ RA, the payoff is given by

ui (x ;αi ) = ui (x) + εαi . (ε > 0, x ∈ ∆(A))

αi is distributed (independently) according to some Gi

(with full support).

! For each action i ,
there are some players for whom i is a dominant action.
⇒ The process x(t) never hits the boundary of ∆(A).

! What happens when the base game (ui )i∈A has a potential
(and when ε → 0)?



Concluding Remarks

! Discussed the “Krugman dynamics”.

! It has been shown that there is a unique state
that is stable (i.e., globally accessible and absorbing)
when the discount rate/adjustment cost is small.

! Stability consideration under this dynamics helps to “select”
among multiple equilibria of the underlying static game.

! “Potential method” in potential games:
Equilibrium paths of the dynamic game are translated into
solutions of a dynamic maximization problem.

! Analog to Hofbauer and Sorger (1999, JET),
who considered the “perfect foresight dynamics” due to
Matsui and Matsuyama (1995, JET).

! See also:
Oyama, Takahashi, and Hofbauer (2008, Theoretical Economics),
for “monotone method” in supermodular games.
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Notes

• Krugman Dynamics:
Krugman (1991), Fukao and Benabou (1993), Oyama (2009)

Applications in economic geography: Baldwin (2001), Ottaviano (2001)

• Perfect Foresight Dynamics:
Matsui and Matsuyama (1995), Hofbauer and Sorger (1999, 2002), Oyama (2002),
Matsui and Oyama (2006), Oyama, Takahashi, and Hofbauer (2008),
Oyama and Tercieux (2004), Takahashi (2008)

Applications in economics: Matsuyama (1991, 1992), Oyama (2006)

• Potential Games:
Monderer and Shapley (1996), Sandholm (2001, 2008), Ui (2007)
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