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(Finite) Strategic Games

N–person game: payoff function U : S1 × S2 × . . . SN → RN

U i(s1, s2, . . . , sN)

N–linear extension to mixed strategies:

U : ∆1 ×∆2 × · · · ×∆N → RN

2-Person games (bimatrix games):

U1(x, y) = x·Ay, U2(x, y) = x·By

Symmetric 2 person games: B = AT

U(x, y) = x·Ay



Perfect foresight paths[MM]

N populations of players: xi(t) ∈ ∆(Si) for t ≥ 0

random matching, players have perfect foresight and

maximize expected discounted payoff

V i
s (t) =

∫ ∞
0

∫ t+z

t
e−θ(τ−t)U i(s, x−i(τ))dτe−zdz

=
∫ ∞
t

e−(1+θ)(τ−t)U i(s, x−i(τ)) dτ

and switch only to an optimal strategy

s ∈ M i(t) = argmax{V i
s (t) : s ∈ Si}.

ẋi
s(t) = −xi

s(t) if s 6∈ M i(t),
ẋi

s(t) ∈ [−xi
s(t),1− xi

s(t)] if s ∈ M i(t)



ẋi
s(t) = −xi

s(t) if s 6∈ M i(t),
ẋi

s(t) ∈ [−xi
s(t),1− xi

s(t)] if s ∈ M i(t)

x : [0,∞) 7→ ∆(S1)× · · · ×∆(SN) Lipschitz

perfect foresight equilibrium path

for the game U and discount rate θ



The discounted game[HS2]

U i
θ(x(·)) =

∫ ∞
0

e−θsU i(x(s))ds (1)

θ–discounted expected payoff for player population i along x(·)

initial point x0 ∈ ∆(S1)× · · · ×∆(SN)
admissible paths: X = X1 × · · · ×XN

Xi = {xi : [0,∞) → ∆(Si), Lipschitz, xi(0) = xi
0,

ẋi(t) + xi(t) ∈ ∆(Si) for a.a. t ≥ 0}.

x̄(·) = (x̄i(·))N
i=1 ∈ X is an θ–equilibrium path

(or open loop Nash equilibrium) if for all xi(·) ∈ Xi and all i,

U i
θ(x̄

i(·); x̄−i(·)) ≥ U i
θ(x

i(·); x̄−i(·)) (2)



Basic Results [HS2, O]

1. Existence of equilibrium paths

For each initial value x0 ∈ ∆ there exists an open loop Nash

equilibrium.

Proof: Xi is convex and compact in the topology of uniform

convergence on compact intervals. (Ascoli–Arcela)

Uθ : X → RN continuous, linear in xi(·). For x ∈ X and i,

βi(x−i) := argmax
xi(·)∈Xi

U i
θ(x

i(·);x−i(·)) (3)

is a compact and convex subset of Xi and depends upper semi-

continuously on x−i

Schauder–Kakutani fixed point theorem



2. Each open loop Nash equilibrium path is a perfect fore-
sight equilibrium path and conversely.

PFE path: bounded Lipschitz solutions x(t), t ≥ 0 of system

ẋi
s ∈ mi

s(V )− xi
s

V̇ i
s = (θ + 1)V i

s − U i(s, x−i),
(4)

mi(V ) = set of optimal mixed strategies for player i

x̄(·) OLNE: ∀i, given x̄−i(·), x̄i(·) is an optimal trajectory of

ẋi = ui − xi, ui ∈ ∆(Si) (5)∫ ∞
0

e−θtU i(xi(t), x̄−i(t))dt → max (6)

Pontrjagin maximum principle,
limiting transversality condition
converse: N-linearity



Example: symmetric 2x2 games

(
a 0
0 b

)
(a, b > 0)

ṗ(t) = H(v(t))− p(t)

v̇(t) = (1 + θ)v(t) + p̂− p(t)

p = x2 = 1− x1, v = (V2 − V1)/(a + b), p̂ = a/(a + b)

Only 5 bounded solutions: 3 equilibria + stable manifolds



APPENDIX

For the 2_2 game from Example 1, we can rewrite Eqs. (7) and (17) as

p* (t)=I+(v(t))& p(t),
(26)

v* (t)=(1+%) v(t)+ p̂& p(t),

where p(t)=x2(t)=1&x1(t), v(t)=[V2(t)&V1(t)]!(a+b), p̂=x2*=
a!(a+b), and I+( } ) is the indicator function of the set (0, "). Figure 1
shows the phase portrait of the piecewise linear differential equation (26)
for the values a=0.6, b=0.4, and %=0.2 which is obtained by glueing
together the two families of solution curves

v=
C

(1& p)1+%+
p

2+%
&

p̂
1+%

+
1

(1+%)(2+%)
>0

and

v=
D

p1+%+
p

2+%
&

p̂
1+%

<0.

FIG. 1. Phase portrait of (26) for a=0.6, b=0.4, and %=0.2.
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Stability

The NE a∗ is absorbing if ∃ neighborhood U of a∗: all PF-paths

starting in U converge to a∗.

The NE a∗ is d-absorbing if the only PF-path starting in a∗ is

the constant one x(t) = a∗.

Conj: absorbing ⇔ d-absorbing

The NE a∗ is globally accessible if ∀ initial state ∃ PF-path that

converges to a∗.

Neither concept implies the other. (cf. Multiplicity of PF-paths.)



If an absorbing state is also globally accessible then it is the

unique absorbing state.

−→ A method for selecting among equilibria.

2× 2 Case [MM] The risk-dominant equilibrium is uniquely ab-

sorbing and globally accessible for small discount rate θ > 0.



1
2–dominance

ŝ = (ŝi) ∈ S1 × S2 × · · · × SN is 1
2–dominant: ŝ = BR(x) for all x

with xi
ŝi
≥ 1

2 for all i.

U has linear incentives if U i(s, x−i) − U i(s′, x−i) is linear in x−i

∀s, s′ ∈ Si, ∀i (e.g. 2 person games)

Theorem. In a game with linear incentives a 1
2-dominant

strategy ŝ is globally accessible for small θ > 0 and absorbing for

all θ > 0.

prime example: risk dominance in symmetric 2× 2 game

Ellison (2000): for KMR, Young



Proof: 1) The straight path

x(t) = x0e−t + (1− e−t)ŝ (7)

is a PFE path for each x0.

2) For x0 close to ŝ the straight path (7) is the only PFE path.



Potential games

U i(x) = U(x) (or linearly equivalent games)

Let U(x̄) > U(x) for all x 6= x̄, i.e. the potential function

U(x) has a unique global maximum at x̄. Then x̄ is globally

accessible for small θ > 0 and absorbing for all θ > 0.

Proof: optimal solutions of Uθ(x(·)) → max for x(·) ∈ X are

OLNE = PFE paths; technical, see [HS1, HS2]

The global potential maximizer x̄ is selected also by the global

games method of Carlsson & van Damme (Ui, 2000), but not

generally by KMR, HarsanyiSelten risk dominance, etc



Consequences

2× 2 coordination games [MM 95]:(
a1, b1 0,0
0,0 a2, b2

)
(ai, bi > 0)

risk dominant equilibrium E: a1b1 > a2b2
1) For small θ > 0: E globally accessible

2) for all θ > 0: E absorbing.

Open problem:

n× n coordination game with payoffs ai, bi > 0

Is the NE with the highest Nash product aibi selected?



N–person symmetric binary games

Ex: N-person stag hunt Carlsson–van Damme (1993)

Youngse Kim (GEB 1996): compares 5 methods of equilibrium
selection, 4 different criteria

ai (bi): payoff for A (B), if i of N players use A

d(p) = U(B, p)− U(A, p) incentive function, p = freq. of B

B is selected over A iff: (n = 2 risk–dominance)

∫ 1
0 d(p)dp > 0 ⇔

∑
bi >

∑
ai : MM, CvD Pot, logit

d(p) > 0 for 1
2 ≤ p ≤ 1 : KMR Güth-K-89, S-95, H–BR∫ 1

0 p(1− p)d(p)dp > 0 : FY-90 H–RE
nonlinear condition in ai, bi : HS-88



More than 2 strategies per player

Few results (1
2 dominance), many open problems

[T] Every two-player game has at most one d-absorbing

strict Nash equilibrium. This is then globally accessible.

(also true for N person games with linear incentives)



A binary 4 person game with two strict Nash equilibria, both are

d-absorbing.

0, 0, 0, 0 0,−1, 0, 0
−1, 0, 0, 0 −1,−1, 0, 0

0, 0, 0,−1 0,−1, 0, 1
−1, 0, 0, 1 −1,−1, 0, 1

0, 0,−1, 0 0,−1, 1, 0
−1, 0, 1, 0 −1,−1, 1, 0

0, 0,−1,−1 0, 1, 1, 1
1, 0, 1, 1 1, 1, 1, 1

Figure 1: A four-player game with two actions.

following way. For any large but finite T > 0, consider a feasible path φT

induced by αT such that αT (t) = ei for t < 0, αT
j (t) > 0 implies j ∈ BR(φT , t)

for 0 ≤ t ≤ T , and αT (t) = x for t > T (Lemma 3). Since ei is d-absorbing,
φT converges to the constant path at ei as T → ∞. Therefore, for any τ > 0
and ε > 0, we can choose T sufficiently large so that |φT (t) − ei| < ε for
0 ≤ t ≤ τ (Lemma 4).

Now we reverse the time axis with respect to period T/2, and define the
path φ∗ induced by α∗ such that α∗(t) = αT (T − t) for each t. φ∗ is a feasible
path from x. By Lemma 1, α∗

j (t) > 0 implies j ∈ BR(φ∗, t) for 0 ≤ t ≤ T .
To show that φ∗ is a perfect foresight path, we have to check i ∈ BR(φ∗, t)
for t > T , additionally. Here, we can choose τ sufficiently large so that φT is
close to ei for a sufficiently long period. Then, the reversed path φ∗ is also
close to ei at period T (Lemma 5). Then, since ei is a strict Nash equilibrium,
i ∈ BR(φ∗, t) for any t > T .

A state x is globally accessible if, from any state, there exists a perfect
foresight path which converges to x. If a game has a globally accessible state
x, then an outside observer cannot exclude the possibility that the action
distribution will be close to x in the future even if the current state is far
from x. Note that a perfect foresight path may not be unique, so the observer
may not conclude that the society always moves to the globally accessible
state. The above proof shows that if a two-player game has a d-absorbing
strict Nash equilibrium, then it is globally accessible.

Theorem 1 does not hold for games with more than two players. Look
at the four-player game in Figure 1, where player 1 chooses a row, player
2 chooses a column, player 3 chooses top or bottom matrices, and player 4
chooses left or right matrices. This game has two strict Nash equilibria, both
of which are d-absorbing. The proof is available on request.
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Does every PF-path converge to a NE?

No! RSP (Rapp)



Supermodular Games

Uij − Ukj is increasing in j for any i > k.

Then x 7→ BR(x) is increasing in x, w.r.t. stochastic dominance

relation

x ≤ y ⇐⇒
n∑

i=k

xi ≤
n∑

i=k

yi ∀k

This supermodularity in the static game is preserved in the per-

fect foresight dynamics: Vi(φ, t) − Vj(φ, t) is increasing in φ for

any i > j and any t. =⇒ Comparison principle

d-absorbing ⇔ absorbing



Theorem.[T]

Every generic supermodular 2 player game has exactly one

d-absorbing strict Nash equilibrium, it is also globally ac-

cessible.



3× 3 symmetric supermodular games [HS2]

A = (aij)i,j=1,2,3 3 strict equilibria

select 2 if 2 >> 1 and 2 >> 3
select 1 if 1 >> 2 >> 3 or

1 >> 2, 3 >> 2 and q1 > q3
select 3 if 3 >> 2 >> 1 or

1 >> 2, 3 >> 2 and q3 > q1

2 >> 1 means 2 risk–dominates 1 in absence of 3

q1 = a11+a12−a21−a22
a21+a23−a11−a13

and q3 = a33+a32−a23−a22
a21+a23−a31−a33



3 Person Unanimity Games

actions Ai, Bi (i = 1,2,3)

Ui(s) =


ai if s = A1A2A3

bi if s = B1B2B3

0 otherwise,

where ai, bi > 0.

A is said to have the higher Nash product if
∏

i ai >
∏

i bi.

(Harsanyi and Selten 1988)



PFD does not necessarily select the strict NE with the higher

Nash product!

Example: a1 = a, a2 = a3 = 1, b1 = b2 = b3 = 2.

If 6 < a < 6 + 2
√

6 = 10.9 both A and B are globally accessible

for small θ > 0.



Open problem:

2 person zero-sum games:

Do all PF-paths converge to the set of equilibria?
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