Local expansion properties of paracontrolled systems

I. BAILLEUL and N. MOENCH

Abstract. The concept of concrete regularity structure gives the algebraic backbone of the
operations involved in the local expansions used in the regularity structure approach to singular
stochastic partial differential equations. The spaces and the details of the structures depend
on each equation. We introduce here a parameter-dependent universal algebraic regularity
structure that can host all the regularity structures used in the study of singular stochastic
partial differential equations. This is done by using the correspondence between the notions of
model on a regularity structure and the notion of paracontrolled system. We prove that the
iterated paraproducts that form the fundamental bricks of paracontrolled systems have some
local expansion properties that are governed by this universal structure.

1 - Introduction

We work in the Euclidean space R%. The Besov-Hblder spaces C'*! over R% and their norms
| |la, are defined as usual for any a; € R from the Littlewood-Paley projectors A, : D'(R%) —
C=(R™) setting || flla, = sup;s_; 24 A;(f)]lo- Let

A<j = Z Aia
i<j—1
and define the paraproduct P(f, g) of any two distributions f, g as
P(f.g):= Z Aci—1(f) Ailg).-
i>1
For f € C** and g € C'*? we have the optimal continuity estimates

P(f Dllas S N fllecllgllaz a1 >0
and

||P(f’ g)||a1+0t2 S ||f||a1||g||a2 if oy <0.
See for instance Section 2.6 in Bahouri, Chemin & Danchin’s textbook [I] for a reference.

1.1 — Local expansion properties of iterated paraproducts. We define inductively the

iterated paraproduct operator by setting P(f) = f, for any distribution f € D’(R%), and
P(f17 .- 7fn) = P(P(f17 ceey fn—l)a fn)

for any n > 2 and any distributions fi,..., f, in D'(R%). If f, € C®", the above continuity
estimates on the paraproduct imply that the iterated paraproduct P(f1,..., f,) is in some
C7 space where v < «,,. Such distributions may nonetheless have some local descriptions to
an accuracy strictly larger that «,, around an arbitrary point. This was noticed for instance
in Corollary 1 of Bailleul & Bernicot’s work [2] in the case of a paraproduct P(f,g) where
feC* geC* and 0 < a; < 1/2. One has indeed in that case

P(f.9)(w) = P(f.9)(2) = f(2)(9(y) — 9(x))| |y — =**, (1.1)
so one can give in that setting a local description of the behaviour of P(f, g) around an arbitrary
point x up to a precision |y — x|?**. More generally, for a,...,a, in the interval (0,1) and
freC ... f, € C* define inductively on n

b—1
Sab(x7y) = P(fav EERE fb)(y) - P(fav ) fb)(x) - Z P(fau ceey fC) S(c-‘rl)b(xvy)

for any 1 < a < b <n. M. Hoshino proved in Theorem 3.1 of [10] that if oy +-- -+ a,, < 1 then
|S1n(z,y)| < |y — x> T, This gives the equivalent of (1.1]) for the iterated paraproduct
P(f1,..., fn) in that case.



One needs an additional ingredient to provide some expansion result at precision larger than
1. For g € C** with ay > 0 we write

a k x)k
R*(g)(y, - Y
k| <oz
for the Taylor remainder function of g at order ay. We use here the convention that for
z=(2',...,2%) € R™ and k € N% one sets 2* = H1<i<d0(zi)ki. M. Hoshino extended in
[12] the expansion result for P(f,g) to any f € C°t,g € C** for ay, 0 > 0 by proving
amongst other things that

\mﬁm@w— A SN O @) R (0) (. )

|k|<or+a2 |k <o

S ly—zte, (1.2)

where the generalized derivative

IR LT RN S M )

ki +ka=k !
k1| <ai,|k2|>az
is indeed well-defined pointwise. The inequality provides a local description of the be-
haviour of P(f,g) around an arbitrary point = to a precision |y — z|*%%2 when ay,as > 0.
Hoshino was able to prove in [I2] a local expansion result for P(f1, fa, f3) when ay, as, ag are all
three positive. Theorem [I] below provides the most general extension of this type of result for
some arbitrary iterated paraproducts P(f,..., fn). In the particular case where the f; € C*
with ag, > 0 for all 1 < k < n, it implies that the function P(f,..., f,) has a local description
around an arbitrary point x up to a precision |y — z|***T "t The statement of Theorem
[[] does not require that all the aj be positive and takes a very precise form. Not only does
P(f1,--., fn) have a local expansion around any point x, but the functions whose values at x
give the coefficients of the expansion of P(f1,..., f,) also have some local expansion, to a lower
precision though. The coefficients that appear in the latter expansion can also be expanded, to
an even lower precision, and so on. A reader acquainted with regularity structures will recognize
here the verbal description of a modelled distribution over a regularity structure. Theorem
states that a certain family of functions and distributions is a model over a particular regularity
structure.

1.2 - Regularity structures associated with iterated paraproducts. The reader will

find in Appendix [A.]1] some basic facts about regularity structures. It suffices to mention here
that they involve some pairs of vector spaces (T,T7) equipped with some algebraic structures

A:T—TTT
and
ATt 5 THeTT.
1. The regularity structure. We need some notations to introduce the structure that is involved
in Theorem [I| This structure involves a positive integer n and a fixed tuple of real numbers
a=(ag,...,an).
We use some blue bold letters k = (ki,..., k) € (N)¢ to denote some tuples of multi-indices
k; € N% of arbitrary length ¢. Denote by |k| = k* + --- + k? the £'(N)-norm of an arbitrary
k= (k... k%) € N and set for k = (ky,..., k) € (N®)e
k| := (Jk1], -, |ke|) € N©
[l == [k1] 4 - - + |k € N.
For k € N% and a non-null integer ¢ we define the set P, (k) of partitions of & into ¢ sub-mutli-

indices as

P.(k) := {(kh...,kc) e (N k=& +"'+kc}-



One has

K|l = [K|
for any k € P.(k) where k € N% ¢ > 1. For some integers a < b we write [a, b] for the set of
integers in the closed interval [a,b]. Let X = (X1,..., X%) stand for an abstract dy-dimensional

monomial with commutative symbol coordinates. For p € N% we set
XP .— (Xl)pl .. (XdO)PdO'
Denote by (e1,...,24,) the canonical basis of N, so X< = X*. The following symbols
B = {[a,b)e X} U{X"}
form the basis of a vector space denoted by T'. Similarly the following symbols
R k i
Bt = {[[a,b]]e} U {XE }1§i§d

generate freely an algebra with unit 1% that we denote by TF. One says that (a,b,k,£)
satisfies condition(a, b, k,€) if 1 < a < b < n,k = (ka,..., k) € Py_ar1(k) for some k € N,
and £ € Py_,(¢) for some £ € N, and we have

max(|k[, |[€)) < > oyl

1<j<n

1<a<b<n,LEPy_,(£),£eN%0, peNo

condition(a,b,k,£)

and

E T (1.3)

a<j<b

We emphasize that the tuples k = (kq, ..., k) € Pp_qt1(k) have b — a + 1 components while
the tuples £ € Py_,(¢) have b — a components. (To have a unified picture in mind one can
think of £ = (£,,...,¢,—1) as the tuple (¢,,...,0,—1,0) with b — a + 1 components.) The k; in
k will represent below some derivatives in some analytic expressions like below. The £; in
£ will represent some polynomial weights in some analytical expressions like below. The
symbols of B and BT index some analytic quantities that will be described below. We define
an a-dependent grading on T' and Tt by defining the degree of [a, b]¢ X? € B as

[0, 6]e X7| = 1€l + > oy + ol

a<j<b
and, requiring that the degree map is multiplicative on T, we set |¢;|o = 1 and define the
degree of [a,b]¥ € BT as

[, 0, = el + > a; — Ikl

a<j<b
We read on the condition ([1.3)) that the elements of BT have a positive degree. We will see in
Section [4] that there are some particular splitting maps A and A% that turn the pair
T, = ((T,A)7 (T+,A+))

into a concrete regularity structure.

2. A model on the reqularity structure. We now define the analytic objects 1 and g that we
associate to the symbols of the regularity structure. Jointly, they define a model (I, g) over a
truncated version of .7, that is parametrized by some non-null integer n and some distributions

(f1,---, fn), where f; € C* for some regularity exponents «; € R. We make the following
assumption on these exponents.

Assumption (A) — One has ) ;05 € Z for all1 <a <b < n.

For £ € N% and i > —1 we define the modified Littlewood-Paley projector Af by setting
(ALf)(@) = f((- = 2) K- — ) (1.4)



for all f € D’(Rd) and z € RY, where AY = A;. For j > 0 we define
. l
O
-1<5'<j-1

and set

Pe(f,9) = Z (Aii—lf) (Aig)

i>1
for any f,g € D’(Rd). Forc> 3, for €= (01,...,0._1) € (Nd")C*1 and <._o = ({1,...,0c—2) €
(Nd")c_2 we define recursively
Pl(fla LRI fc) = Péc,1 (Pegcfz(fh ey fc—l)a fc)
For [a,b]¢X? € B we define the distribution I([a,b]¢X?) by its action on a test function ¢

N ([0, bleX?) () = N([a, ble) (7) (1.5)
with (P¢)(y) = y"¢(y) and
I'I([[a,b]]i) = Pg(fa,...,fb). (16)
The definition of the character g on T requires a notation. For a tuple 8 = (531,...,3.) € R®
of regularity exponents and € = (¢1,...,0._1) € (Nd(’)C*1 we set £, = 0 and define the set of
£-admissible cuts of 5 as

£ — Cut(p) := {1 <d<c—1;L4=0, > (Be+le])>0, > (Bet]te]) < 0} (1.7)
1<e<d d+1<e<c
and for d € £ — Cut(8) we set

ra=ra(8,£) :=ming > (Be+lel), — D> (Be+ILe])

1<e<d d+1<e<c

Set

Bﬁe = (ﬁla"'vﬁe)v B>€ = (6e+17"‘7ﬁc)7 ﬁ[[a,b]] = (ﬂa,...,ﬁb)
forany 1 <e<cande<c—1and 1<a<b<c, respectively. We define recursively

Pf(gl,“wgc)
= Pl(gla L agC)
m! SBcqa—Mm [ am m ~
- XX Py ™ (O™ gus s 07 0) P (g0, 52)

m!m/'!
del—Cut(B) mePy(m)
Im|<ra m’'€Pe._aq(m)

(1.8)

where m € N% and with the convention that F’ﬁf (gc) = ¢.. For any §; € R we denote by chi
the closure of C> N CP in CP . In the course of proving Theorem [I| below we will prove that
Pf(gl,...,gc) e L®ifgie CF forall 1 <i < cand |£]+ Y 1<iceBi > 0. Given a tuple

a = (ag,...,a,) € R" of regularity exponents and f; € C%, for all 1 < i < n, we can then
define for [a,b]s € B* with k = (ka, ..., kp)
~ap.p—|k
g([a,b]) := Pyt M @hey, ok p). (1.9)

1 — Theorem. The pair (M,g) is a model on the reqularity structure J,. It depends continu-
ously on (f1,..., fa) € [Tie; C&.
For g to be part of a model we need to prove that each function g([[a, b]]f) has a local expan-

sion to accuracy |y — x||[[“>b]]lz lo around any point x, with the different terms in the expansion
indexed by the algebraic structure of the Hopf algebra (T, AT). For I to be part of a model it
also needs to satisfy some local expansion property that involves g as well. The strategy that we
adopt to prove Theorem [I]is first to prove a statement of a similar flavor for some distributions



and functions that are built from a simplified version of the iterated paraproducts. The algebra
involved in the analysis of these operators is simpler than that of the true iterated paraproducts,
and their analytical properties are more flexible. At the same time, we will see in Proposition
of Section that P(f1,..., fn) can be written as a sum of simplified paraproducts evaluated
on some other functions/distributions built from the f;. This fact will play a crucial role in
transfering the local expansion properties of the simplified iterated paraproducts to the true
iterated paraproducts.

1.3 — Local expansion properties of paracontrolled systems. We are interested in

iterated paraproducts as they are one of the building blocks of paracontrolled calculus. Para-
controlled systems play within paracontrolled calculus the role that modelled distributions play
with regularity structures. Assume we are given a finite set of letters £ = {l1,...,l|z|} and a
family [I] € C"™ of distributions on R® indexed by £. We denote by w = I;, ...l;, a generic
word with letters from £. The concatenation of two words w; and ws is denoted by wyws. If
w = wywy we say that wy the a begining of the word w. We assume that the letters come with
a notion of size |l;| € R and set

lwl = i, | + -+ + L, |-

The empty word wy has size 0. For a positive real number r we denote by W, the set of
words of size less than r, including the empty word. An r-paracontrolled system is a family
(ww)weu., of functions/distributions on R% indexed by a subset U, of W, that contains the
empty word wy and which has the following properties.

(1) There is a finite subset L{ir of U, made up of words of positive size and such that
every word of U, is the begining of one of the words of Z/{é,.. (The exponent f in L{i,.
stands for ‘final’.)

(2) For all w € U<, one has
wy = Pu,,[l] + 1, (1.10)
lel
with uf, € CmIvl,
Condition (1) ensures that the family (4., )weu., is finite even if some of the sizes |I| are non-
positive. This condition is automatically satisfied if all the || are positive. We talk of the [I] as
the reference functions/distributions. Here is an example of an r—paracontrolled system with
two reference functions [I;] € Clhl [Iy] € Cl2) with |1;], |l2] positive and [I1] + |lo] <7
Uiy = Plus, [11]) + P(ug, |l2]) + ul,
uy = P(uyy, [l1]) + uﬁ, ug = P(ua1, [I1]) + Uﬁg
Uil = uﬁl, U221 = Ugl.
One observes that
Uy = Puat, (1), (1)) + P(ud, [l ]) + P(uzr, [11], [l2]) + P(ub, [l2]) + P(ub,,)
up = P(uly, [h) +P(ul), s =P(udy, [h]) + P(uf).
More generally, for an arbitrary r-paracontrolled system, it follows from ([1.10)) that each w,,
writes as a finite sum of iterated paraproducts of the form P(uwu il - [li.]), including
ul, = P(uf).

Paracontrolled systems were first introduced by Bailleul & Bernicot in [2] in their develop-
ment of paracontrolled calculus, for its application to some classes of singular stochastic partial
differential equations. Under some appropriate conditions, such equations have a unique solu-
tion in an equation-dependent space of functions/distributions with a paracontrolled structure
(1.10). On can say that paracontrolled calculus replaces the mechanics of local expansions in

space that is at the heart of regularity structures by a type of expansion in frequency (Fourier)
space.



The notion of paracontrolled system is useful even for the study of regularity structures.
Bailleul & Hoshino proved for instance in [4] that, for a model M = (I1,g) on a fixed regularity
structure, the distributions/functions MN(7) and g(u) can be described by some paracontrolled
systems

H(T) = Z Pg(T/a) [U}M + [T]M

o<T

g() = D Py v+ [

1t<tu<tpy

(1.11)

for some reference functions/distributions [7]M € C!7l [u]& € C1#! built from M, for some index
sets 0 < 7 and 17 <t v <T pu whose precise definition does not matter here — see Section 2.2
of [3] for that point. Further, for any modelled distribution v = ) _wv,7 of positive regularity
r the family (RM(v), (v-)-) is an r-paracontrolled system

RM(v) = D Pu [1" + [v]

|T|<r

Ur = Z Po, [o/7]® + [v-]

T<o,|lo|<r

(1.12)

with reference functions/distributions the family of brackets [r]M, [u]8. This is Proposition 12

and Theorem 1 in [4]. Bailleul & Hoshino further proved in Theorem 1 of [5] that a sub-family
of these ‘brackets’ [7]M, [u]® parametrizes the set of models, providing in particular a linear
parametrization of the nonlinear space of models. These results hold for any reasonable regu-
larity structure. For a particular class of regularity structures 7 including the BHZ regularity
structures used for the study of subcritical singular stochastic PDEs, they proved that for a given
model on .7 the set of admissible modelled distributions with regularity r is parametrized by
the family of functions/distributions {[v] € C"} U{[v;] € C"~I"], 7 in a linear basis of T}IT\<7'
— this is Theorem 5 and Theorem 7 in [5]. In all these results the regularity structure is fixed.
In particular, if we are given some placeholders for [v] and the [v,] there is a unique admissible
modelled distribution over the given regularity structure that has these functions/distributions
as its brackets.

In the more general situation of an arbitrary paracontrolled system there is no a priori
regularity structure. Our second main result means informally that we can lift a paracontrolled
system into a modelled distribution on some universal regularity structure and for some system-
dependent model. Recall we assume [] € C".

2 — Theorem. Pickr > 0. Given an r-paracontrolled system (Uy)weu., as in (1.10) there is
an explicit reqularity structure I that depends only on |L|, r and the reqularity exponents ry,
a model M on I and a modelled distribution w of regularity r such that u.,, = RM(w).

Regularity structures were first introduced by M. Hairer as a setting adapted to give sense
to, and study, a large class of stochastic partial differential equations that are outside of the
scope of classical stochastic calculus. Each equation in this class can be formulated as a fixed
point problem in a random space of modelled distributions over a deterministic, equation-
dependent, regularity structure. A solution to a singular stochastic partial differential equation
then comes under the form of a local expansion around each state space point. The choice
of regularity structures as a language to make sense of solutions to such equations is not the
only choice possible. Gubinelli, Imkeller & Perkowski [7] introduced the notion of paracontrolled
distribution at the same time that Hairer introduced regularity structures. A number of singular
equations can be dealt with using the setting of the high order paracontrolled calculus of
Bailleul & Bernicot [2]. In that language a solution to an equation comes under the form of
a paracontrolled system. It was thus natural to ask if there is any correspondence between
the fundamental notions of models and modelled distributions in regularity structures and the
basic notion of paracontrolled system in paracontrolled calculus. Bailleul & Hoshino’s works



[4, 5] establish such a correspondence building on and . One associates to an
equation a regularity structure .7, to a model M the paracontrolled system and to a
model distribution v defined of M the paracontrolled system . The inverse map consists
in getting back the model M over .7 from and the modelled distribution v from (1.12)). In
that context, Theorem [2| does something of a different nature. Starting from the paracontrolled

systems (1.11)) and (1.12), it introduces

— another regularity structure .77 that retains little information about the initial regularity
structure 7,
— a model and a modelled distribution on 9,

whose associated paracontrolled systems are also given by (1.11)) and (1.12). This situation is
somewhat reminiscent of the study by Hairer & Kelly [9] of the links between the notions of
geometric and branched rough paths.

Organisation of the article. A ‘simplified’ iterated paraproduct operator P (f1,..., fn)
is introduced in Section [2] and we provide in Section [2.3] its local expansion properties. The
latter involve some functions O P(f1, ..., fn) that are introduced in Section These functions
also have some local expansion properties which we investigate in Section [3] We leave aside
the simplified iterated paraproducts in Section [ and describe in this section the regularity
structure 7, that is involved in the statement of Theorem This statement is proved in
Section [5} We build in Section a number of functions/distributions that will be used to
represent an iterated paraproduct P(f1,. .., fn) as a sum of simplified P iterated paraproducts.
The representation formula itself is proved in Section We prove Theorem |[1|in Section [5.3]
Section [6] is dedicated to proving Theorem [2] We describe the universal regularity structure
involved in this statement in Section [6.1] and prove Theorem 2] in Section [6.2} A number of
technical lemmas are deferred to some appendices. The proof of the local expansion property
of the O*P(f1, ..., f) involves in particular some algebraic results that are proved in Appendix
[A.3] So is the proof of some algebraic identities that play a crucial role in our proof of Theorem
Appendix gives some background on regularity structures and Appendix gives some
general and particular analysis results.

Notations. We collect here a number of notations that are used throughout the text.

— The letters i,j and a, b, c,d, e will exclusively be used to denote some integers.

— The letters k, £, m will denote exclusively some elements of Ndo .

— We denote by @ = (ay,a,...) or B = (B1,P2,...) some finite tuples of regularity
exponents ay, B; in R.

~ Forz=(z',...,2%) € R® and k € N™ we write z* = H1<i<d0(zi)ki.

— Fork = (k',... k%) € N we write k! = H?il k. Form,m/,,...,m. in N we set

< m > _ m!

(m&,,m;) ngigr m;'

— We write S, for an inequality that holds up to a multiplicative positive constant that
only depends on a parameter p.

— We work here in the Euclidean space R All that follows has a direct counterpart in an
anisotropic version of R . We stick to the Euclidean setting not to distract the reader
from the main points of this work.

2 — Simplified iterated paraproducts and their local expansion properties

We introduce in this section some simplified iterated paraproducts defined inductively from
their Littlewood-Paley description

Ai(Pe(fis-- i fn) = Acica(P<(f1ye ooy fam1)) Di(fn)-



It turns out to be convenient to define these functions/distributions on a slightly larger class
of objects than the usual C spaces, @ € R. The setting is described in Section [2.1] The
description of the local expansion properties of the simplified iterated paraproducts involves
some generalized derivative operators O that we introduce in Section We state and prove
the local expansion property of the P (fy,...,f,) in Section for f; € C* with o; > 0 for
all1 <75 <n.

2.1 — Simplified iterated paraproducts. We will work through part of this document with

the following extension of the Holder-Besov spaces.

Definition — For r € R we define C" as the vector space of sequences f = (f;)i>—1 of smooth
functions to which one can associate a ball B C (Rd")' such that each f; is spectrally supported
in 2'B and _
[Ifll, == sup 2" || fill poo < 00
i>—1

This formula defines a norm on C". An element of
C™® :— (1 cr
r>0
1s said to be smooth, and we set

o UL e | e

reER r>0
We write C7, for the closure of C*° in C".

For r > 0 there is a canonical continuous non-injective surjection from C" onto C" sending f
to >, _; fi. The Paley-Littlewood projectors give a continuous injection from C” into C" for

any r € R. We define for any distribution f on R and o € R, its Taylor polynomial T} f of
order o in the direction h € R? as the distribution

k
@NO = 3 5 @ N0,
|k|<o

Its associated Taylor remainder R, f is defined from the relation

(W (RRf) () := f(- 4+ h) = (TZ ) ().
The derivation operator 9%, the Taylor expansion and remainder maps 7, v, R}, can be applied
to any f = (f;)i>—1 € C” by applying the corresponding classical operators to every f;. These
operations behave well in this context. For any r € R and k € Ndo, Bernstein inequalities

ensures that 9% : C" — C"~I*l defines a continuous operator. We give the proof of the following
elementary fact in Appendix [A.2]

3 — Lemma. Forr € R,f e C" with f; is spectrally supported in 2'B, and o € R, we have

k
e h) = 32 @) = i (R
|k|<o
with
IBRf,—o S (Il
uniformly over |h| < 1.

For fy,...,f, in C°° we define iteratively the simplified iterated paraproducts
Po(fi,....fn) = (P<(f1,... ,fn)i)i271
as the element of C~*° given by P.(f;) = f; and with f,, = (fni)i>—1
Po(fi,. o f)i = Acici (P (i, 1) foie



We write

Pe(fiofn) = > Pelfr,. . )i

i>—1
for its corresponding distribution. Recall from §2 of Section [I.2] the statement of Assumption
(A). From now on

all our tuples « = (a1,...,0a),8 = (B1,.-.,0n) in R" will satisfy Assumption (A).

2.2 — Generalized derivative operator af. Recall from (1.7) the definition of the set of
the £-admissible cuts of a tuple § = (81, ..., 8,) € R". We define here the set of cuts of § as

Cut(p) :=0— Cut(p) = {d el,n—-1], Zﬂj >0 and Z Bj < 0}

j=d+1
We also define the following set of multi-cuts of 6

MultiCut(8) := {d - (o =dy<dy < < dya) = n) Ve € [Ln(d) — 1], d. € Cut(ﬁ)}.

4 — Definition. For 3 € R" and f1,...,f, € COF we set

n(d)
Pl(fr,..f) = > ()" Pe(fasas- ).
deMultiCut(83) e=1

We also set fori > —1
P2 (hy,...,ho){i}
n(d)—1

= Z n(d { H P< hdc 1+1""’hd6)}P<(hdn(d)1+17"'7hn)i'

dEMuItiCut(B)
One has for instance ﬁg (f) =P<(f) =25, fi forall f = (fi)i>—1 € C°*°, and
PEY(f,,f5) = PL(f1, ),
§(<1’_2)(f1,f2) =P_(f1,fz) — fifa,
PUTRTI (6 £y, f3, 1) = P (fi, fo, 5, fa) — iP < (Fa f, f4) — Po(fi, o, f3)fs + P (fo, f3)fa,
PULTL3/D (1) £, 63) = P (f1, 2, fs).

One has the relation Isg(hl, ..., hy) = Zizfl ﬁg(hh ..., hp){i}, however Isg(hl, ., hp){é}

does not represent the Paley-Littlewood projection of Isg(hl, ..., hy) as it is not spectrally
supported in a ball, we introduce it as it appears naturally in the algebraic manipulations

involving Pg operators.

5 — Proposition. For any 8 € R", setting

&p —{06[1 n]; Zﬁj>0 and Zﬁj>0}

j=c
and "
L maxé'g, if(c,’g 75 ;
Mo *= { 1, otherwise. ’
one has for every (fi,...,f,) € (COT)" the estimate

ARERATGIESae sty § (TN
=1
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The exponent 3 in the notation ﬁg records this somewhat optimal extension result.

6 — Corollary. For any 8 € R" such that Z;;l B; > 0, the map
(fiye oo fu) € (C°)" = PE(fr, ... f,) € L™

has a continuous extension as a map from H;'L:1 C’fj into L*>°.

The remaining of this section is dedicated to proving Proposition We will use for that
purpose the following algebraic result. We state it and prove it first before giving the proof of
Proposition @ In the following statement any constant in the open interval (1,2) could be used
in place of 3/2.

7 — Lemma. Given 8 € R™ we define

n—1

Do e { +1 if (n —.c) € Cut(p) , P H(—pc)-

—1 otherwise -
c=

For any hy = (h1;)i>—1,---,hy = (hpi)i>—1 in C> we have

Plhi, . h){int=p > > T rein—cr-

p1(izg—i1+3/2)>0 Prn—1(in—in—1+3/2)>0 c=1

Proof — We prove the identity by induction on n. The result holds for ﬁg(hl) Suppose now
that it holds for (n — 1) functions and consider first the case that (n — 1) ¢ Cut(8), so p1 = —1

and the condition py(ia — 41 + 3/2) > 0 reads i3 < i3 — 1. Then ﬁ’i (hl, A hn) {i1} is equal to

n(d)—1

Z ( n(d { H P< hdc 1+17"‘7hdc)}P<(hdn(d)1+17""hn)i1

deMultiCut(B)

n(d)—1
_ Z (1 n(d)-‘rl{ H P (ha,_ 1+1’...7hdc)}P<(hdn(d)—l+17-..,hn1)<i1—1hni1
deMultiCut(B)
= B (e b i) B
ip<t1—1
where

B = (B, -, Bo-z Buo1 + B )

From the induction hypothesis we have

n—1
N T O D | L

p2(is—ia+3/2)>0  pp_1(in—in_143/2)>0 c=1

so we can conclude the induction in that case. If now (n —1) € Cut(3) we have p; = 1 and the
condition pi(ia — i1 + 3/2) > 0 reads iz > i3 — 1. We have in that case

P2 (hy,... h){in}

n(d)—1
= Z n(d H P< hdc 1+17""h C)hnil
deMultiCut(ﬁ)
(n—1)ed
n(d)—1
+ Z (_1)n(d)+1 H P<(hdc—1+17~"7th)P< (hd"(d)’1+1,...’hn)il
deMultiCut(8) e=1

(n—1)¢d
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n(d)—1

- ¥ 1)@+ H Po(hg._y41s-- - ha.) i,

dEMuItiCut(,B)

(n—1)ed
n(d)—1
+ > DT Pe(hae it ha ) P< (haygy 1 hnet) oy B
deMultiCut(3) c=1
(n—1)¢d
n(d)—
- Y n(d)+1{ H Pe(hao r1s--->ha)
deMultiCut(B*) c=
n(d)—2

IT P<(haisr, - ha)Pe(ha, iy pits-- s b 1)<“_1}hm-1

- Z ﬁg* (hla'--zhn—l){iQ}hnil.

12>%1—2

We conclude from the induction hypothesis that

Pl )iy == 3 (=) > Y {H"}h

i>i—1 p2(is—ia+3/2)>0  pp_1(in—in_1+3/2)>0 * c=1

which allows us to close the induction in that case. >

Proof of Proposition[6] — For hy,...h, € C™ we have from Lemma [7| the bound
PE(h,. . ho){i}] S Cpli HHh g,

where

Cs(ir) == Z Z H2_in+cflﬁc.

p1(i2—i143/2)>0  pn—1(in—in_143/2)>0 c=1
We prove by induction that
i) S 2772 =ma . (2.1)
— If 51 < 0 we have p,—1 = —1 and
> 971 o gTin-1P1
ini pn—1(in—in—1+3/2)>0
We have in that case

C(ﬁl,~~~ﬁn)(i) = C(BlJrﬁz,ﬁzuwﬁn)(i)'
— If now 31 > 0 and 2?22 B; < 0, then p,_1 = +1 and we have

Z 2_7:7151 ~ 2_in—1ﬂ1,

in; pn—1(in—in—1+3/2)>0
so we have again

C1.08) (1) = C(81482,85....8,) (1)
~ If finally 81 > 0 and >_7_, #; > 0, we have this time

—inB1 ~
§ 9= inf1 ~ 1,
in; pn—l(in,_in—1+3/2)>0
SO
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In all the cases the inequality (2.1 follows by induction since Cg,) (i) = 2771, >
Definition — Pick some integers 1 < a < b < n and a = (@g,...,q) € R'=*L. For

k= (ka,... k) € (N®)=0FL gnd f, ... f, in C° we define
08P (Fur. o fy) 1= PL T (e, o ).

and

k
P (far o f) = D <k> O P (farofb),

kEPy_qp1 (k)

As a consequence of Corollary |§| the map 0F P_ is continuous from nga Co7 into L™ if
k| < Z?:a aj. It makes sense in that setting so simply write 9% rather than 0%, as the
information on « is already recorded in the domain H?: “ CS? of the extension.

The following lemma gives a recursive definition of the Isi(hl, <o, h){i}

8 — Lemma. For any 8= (B1,...,0,) € R" and any hy, ... h, in C° we have
P2 (h1,...h,){i} =P (h,...,hy). (2.2)

3

- PUL B0 (o hg) PUS ) (hyy g ) i) (2.3)
deCut(B)

Proof — Assumption (A) implies in particular that the '2:1 (. are all distinct for different
j € [1,n —1]. We then have the following partition of MultiCut(5)

MultiCut(8) = {(0,m)} U | | MultiCut(8)[d],

deCut(B)
with

d J
MultiCut(8)[d] = {d € MultiCut(3); d € d, ;ﬁ = 1}1615125}

One can thus write
P2(hy,...h){i} = P_(hy,... h,);

n(d)—1
+ > S @ T Pe(haisi- o ha) Pe(hay gyt ) {i}-
deCut(B) deMultiCut(8)[d] c=1

For d € Cut(f) and 1 < j < d we have the equivalence
(Hd e MultiCut(8)[d], j € d) o (j € Cut((ﬂl,...,ﬁd))).
Likewise for d < j < n we have
(3d € MultiCut(8)[d], j € d) o (j —d e Cut((Bay, .- ,m)).

This entails that we have

n(d)—1
> =" T Pe(hao 1o ha )P<(ha, o ya1s -0 ho){i}
deMultiCut(8)[d] c=1

= —ﬁﬁid (h1,...,hq) ﬁgM (hat1s - ha) i},

from which the statement of the lemma follows. >
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On can rewrite Lemma [8|in the context of the 0,-derivatives. For any multi-indice & € N9
we have
8&I::04P< (fla cee afn)
n—1 k
= P (1. fn) — > E) O P iy o) Ol Pe(ferns o).
T <3io oy
|k—L1>327 1oy

C

(2.4)

2.3 — Local expansion properties of the P (f;,...f,). Recall Hoshino’s expansion result
(1.2) for P(f,g), for both f and g of positive regularity. We would like to give a similar expansion
result for P (f1,..., f,) for an arbitrary n > 2.

Pick f; € C% for each 1 < j < n. Let us make a first naive try at expanding P (fi,...f,)(-+
h) as a function of h € R% . For any o > 0 we have

P<(f1,...,fn)(-+h) = P<(f1(-+h),...,fn(~+h))

e B hk o—|k1| po—Ik1l
=Y p (o flk? > g 0+ [l Ry,

D .
[k2|<o—|k1]

+ P (BB, Bl 4 b)) = (o) (2.5)

h* (k k k
-y T M<k>P<(81f1,...78"fn)

|k|<o keP, (k)

n hk|h‘o—\k| . . ol
+ E Z TP<(5 1f17...78071f671,Rh fc7 chrl(._A'_h),”.)
c=1 ‘k|<o .
keP._1(k)

=TPP(fi,....f,)

+i Z WP< <8k1f1,...,5’%’1&717}227'“&7 fer1(- + h), )

k!
c=1 |k|<o
keP._1(k)

This formula does not give us the kind of expansion we are looking for as the last paraproducts
in the right hand side of the equation contain some distributions with negative regularities
so these paraproducts have no reason to define some functions. This would be the case if
we had instead of some P. terms some Pi terms, for some appropriate tuples 5 depending
on the arguments. We will get our local expansion for P.(fi,...f,)(- + h) by introducing the
appropriate terms to force the appearance of these ﬁg We proceed gradually and first introduce
the quantity that will be the remainder term in this expansion. For 1 <a <b<n-—1,k € No
and k = (kgt1,---,kb—1) € Po_a—1(k) set

aq(k,0) = (aa+1 —|kat1l, -+, ap—1 — |kp—1], ap — 0+ |k|, apt1,-- -, an).
and
n hE|R|o— 1kl ~ Y
(A%,OP<) (fa+17 o >fn) = Z Z # P<a(k’ )(8ka+1fa+1 ey 8’%’1{:&,,1,
b=a+1 |k|<o :
kePp_a—1(k)

RO, 604+ h) h))7
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and for i > —1

Aoc f f - P = hk|h|0—|k‘ ~aa(k:,0) kfa+1f kbflf
(A P<) Fars o F){ih = . D 2 — P2 (a SIRUU LSt A

k
b=a+1 |k|<o
kePy_a—1(k)

szlklfb7 for1(-+h), ..., fu(-+ h)) {1}.

We denote by dy the distance from Z to the set of all Za<j<b a; ¢ Z where 1 <a <b<n;
it is positive from Assumption (A). Lemma [3| and Proposition [5| give us uniform continuity

estimates on (Af ,P<)(fat1, ..., fa){i}. In particular if o > 377 | a; — o, one has
(A5 P<) (Fagts - Fu){i}] S Rl == T 15, - (2.6)
Jj=a+1

and for o <377 . @

|(Ag,op<)(fa+1v s ,fn)| SJ |h‘o H ||fj||aj .
j=a+1
9 — Proposition. Pickfy,...,f, in C°. Assume all the oj are positive and o > 2?21 a; —dp.

Then we have
(Aﬁ,OP<)(f1, ot} = P<(f1, . ’f”)i(' +h)— T;‘L’P<(f1, . ’f”)i

n hk .
*Z Z anSaP<(f1,...,fa)H(A‘,j"o_lklP<)(fa+1,...,fn){z}.

a=1]k|<3f; o

Proof — We use in the proof the shorthand notation
Oé(k?) = ao(k?70) = (a1 — |]§71|, ey Ozj_l — |kj_1|, Olj — 0+ |k|, Olj+1, .. .,Oén).
As all the a; are positve we have Cut(a(k)) C [1,7 — 1], so (2.2)) writes here
52(’6) (aklfh e 751@-71%71’ szlklfﬁ fir1(-+h),. ){z}

= P< (aklfh [N ,8kj71fj,1,RZ_|k|fj7 fj+1(' + h)7 . .)i

D DI G i

deCut(a(k))

x pelk)=a (akd+lfd+1a 0, Rzilklfm fipa(-+ h)7...){z'}
=P (0", 09 Ry ), )

- > ()

deCut(a(k))

i

x PER (Rt 08 B, (- h), ) (i)

Note that as 0 > 77| aj — &y we have

d
Cut(a(k)) = {d e 1,n]; Za(k)j > 0};
j=1

we will use this fact to invert the sums over m and j below. Summing over j, k and k gives



‘ n hlc hof|k| . o
(AF P i =Y > #P<<ak1f1,...,8k1*1fj,1,Rh Ml £+ h),. .

j=1  |k|<o
keP;_1(k)
n hk|h|of|k| &
=> > — > AP (f . fa)
Jj=1  |k|<o © deCut(a(k))

k:G'ijl(k)

x PR (Rt 08, By, (- h), ) (i)

n . RY|h|o—IkI=1
=> > 7am<d (Fiy. .., fa Z > —

d:l‘k|<2?:1 : j=d+1 |¢|<o—|k|
kePa_1(k) LEP;—a—1(¢)

x Pttty (3€1fd+1, oty Ry L 4n),

=y > _6fa<d <(fre ) (A o g P<) (Fara, - )i}

d=1 k<38, ou

The identity ﬁ ) then follows from ([2.5)).

15

)i}

>

The terms Aj |k‘P<(fd+1, ..., fn) for which o — |k| > Z;L:d+l a;, in (2.7), are still prob-

lematic as one cannot use Corollary [f] for them.

10 — Lemma. Assume all the oy positive. For 1 < a < n and Z?:a aj — 0y < o1 < 02, we

have

k
(B50P <) (Far o F) () = (DR P) (o )b = 30 5 0 Pl Ra) i

71<|]€|<02

Proof — We prove it by induction over n — a with the help of Proposition [0] and the inductive
relation (2.4) satisfied by the star derivatives. The result is true for a = n as in this case A, ,P<

coincides with the Taylor remainder |h|"Ry. To run the induction step we use Proposition |§|

see that (Ah 0sP<) (far - ) {i} — (A‘f;olP<) (far .., fa){i} is equal to

= TP (fare e ), = TP (Fas -, )

g

n—1
-S> 8fa[[aﬂP<(fa,...,fj)h—I.)

Jj=a \p\<2£:a Qg

X{( z,OQ—pP<)(fj+1a"' ){} ( h,01— pP )(fj+1a-~-a

From the induction hypothesis the above quantity is equal to

K ,Ek_n_l D h?
> A R A o> R Pelfar )

; - p!
01<|k|<o2 J=a |p|<>>?

s=a ¥s

o bt
x> af%mﬂm(fjﬂ,...,fn){z}E.

ri1<|[l|+|p|<o2

We conclude using (2.4).

For0<c¢<n-—1welet
Aymp<(fc+1,...,f ) (Aa ’Z] C+10th) )(fc+1;-~-7fn)($>7

to

)

f) (i} }-
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and for ¢ > —1
Any<<Fch17 o 7fn){7’} = (Agfw,Z?:CJrl a; P<> (fc+1a o afn) {Z}(Q?)

From Lemma (10{ we know that for any o € (37_ ., aj —d0,>.7_. 1 @; + d) one has the
equality
DyoP(fogr, .. )i} = (A;‘_E7OP<) (fc+1, e ,fn){z}(:c)
Then for any o in a neighborhood of Z;LZ ep1 @, from the following estimate holds

n

| ADyaP<(ferns o B} Sly—al” T Ifsl,, 277 =70 (2.8)
j=c+1

The following Lemma was already used in [IT] and enables us to get the optimal bound on
|AyeP<(fett, - -, fr)|, we reproduce its proof in Appendix
11 — Lemma. Assume we are given a family of absolutely convergent series (ny =>i>_1 X;x)
indexed by x,y € R?, for which there exists some positive constants C > 0 and ~y > 0 such that
the uniform bound . ‘

| Xyol < C27°0"D |y — 2|
holds for any 0 in a neighborhood of v. Then we have
Xyal S Cly —al,

uniformly over x,y € R® such that |y — x| < 1.

From (2.8)) and Lemma [11] one has then for |y — z| <1

n

|8yeP o )| S TT Il by — afS5mee s
Jj=c+1

It follows then that the following fact holds.

N

12 — Proposition. Pick a = (a1,...,ay) € (0,400)", for all f; € Cy?, where 1 < j < n, we
have the local expansion

_ K (y — I)k
Pe(fi o f)) = > 6*aP<(f1,...,fn)(x)T
k<7 o '

n—1 k
y—z)
+> > O P<(frs. o fe) (@) ( o DuaPe(ferns )
=1 [k|<XZ5_, o5

+ (DyeP ) (Fry o),

s { H Hfﬂ'Haj } ly — x|zj’:c+1 o

j=c+1

where

’(Asz<)(fc+1, )

Proof — From Propositions [J] and [I0] we have

(Ay$P<)(f17 ’fn) = P<(f1>"' afn)(y) - Z (y;film)kakp< (fla"' 7fn)($)
|k| <0 )
Y e )@

(Ayxp<)(fc+1, e afn)
=1 p| <X, o s
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L

_Zn: Z (y—2)? (y —2)
! !
L ppl<Siga L
[e1>>27 i1 o
x OPP(fr, -+ F) (2)0P < (Fogry -+ ) ().
Using Equation [2.4] gives the statement of the proposition. >

We obtain the fact that one can work with f; € Co’ rather than with f; € C® by an
elementary continuity reasoning. In that setting we would write the expansion with the lighter

notation d% in place of 9%, _, as the use of the subscripts a<. would be redundant.

3 — Local expansion properties of the O*P_(fy, ..., f.)

The quantities 8fa<c P<(f1,...,f.) appear as coefficients in the local expansion of the simpli-
fied paraproduct P (f1,...,f,). These coefficients also have a local expansion property that we

describe in this section. It will be convenient for that purpose to introduce in Section [3.1] some

~nl n2
operators Pg A" indexed by two tuples of integers, as an intermediate tool. The local expansion

formula for O¥P_(f1, ..., f.) follows from a similar expansion for the 52 operators. The latter
is given in Proposition [16| and takes a form similar to the expansion formula for P.. Its proof
has the same architecture as the proof of Proposition [I2} It is described in Section [3.2}

3.1 — The operators ﬁél’ﬁ 2. Their definition requires the following notation.
Definition — For B, 3% in R" such that B} > B2 for all 1 <i < n we set
MultiCut(3, 5)
= {d =(0=dy<di < <dya =n); Ve € [1,n(d) — 1], d. € Cut(8") U Cut(ﬁ2)}.

For (h;)1<i<n C C°T we set

n(d)
nggz(hl,...,hn) = > (=)™ DT P<(hae_is1s-- - ha,).
deMultiCut(BL,52) e=1

The following statement is proved in Appendix

18 — Lemma. Pick 3*,3% in R? satisfying Assumption (A). If 52 < B} forall1 <i<n
then for any hy,...,h, in C we have

" - ~al 2 ~pnl 2
PL (e, ha) = P2 (o) = 0PI (e ) P ().
deCut(B82)\Cut(BL)

We will use in the end the ﬁgl’BQ operators in settings where Y B% > 0. In that case we
have Cut(8') C Cut(53?), so Isgl’ﬁz (hy,...,hy) = Isiz(hl, ..., hy), and we will be able to use the

~nl 02
continuity property of Proposition General P’i 8 operators will be useful in the algebraic
steps.

3.2 — Local expansion properties of the F’g (fi,...,fn). Pick 8 € R" such that 31", 3; >
0. Proceeding as in (2.5)) we see that
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PL(fi, oy f0) (+h) =PL(FL(- 4+ R), . (- + 1))
=17 i(fl,...,f)

n Z Z MN (aklf ,a’“mflfm_l,Rfflklfm, g1 (- + h), )

k!
m=1  |k|<o
KEP_1(k)

With the same motivations as in Section 2.3 we set here
Ba(k,0) == (Batr = hataly -, Boor = kol By = 0+ K], Boray oo Bu)-
and

~ n klplo—Ikl _
(D8hoP2) (Fasrs- - fn) = Z Z o L prafalion) (3k“+1fa+1 G Al

k!
b=a+1 |k|<o
kePy_q_1(k)

By M, fya (-4 B, a4 B).
and for i > —1

A ~B f f o — = hk?|h|0_‘k| ~5>avﬂa(k’v"‘) ka+1f kbflf
( h,oP<)(a+1v'~w n){l} Z Z P< 0 a+1~~o78 b—1,

k!
b=a+1 |k|<o
kEPy—_q-1(k)

By M6, foga (), 1)) i),
For any k € N and k = (kay. -« k) € Po—ay1(k) we also set
ORI (f, L fy) = P Plen =Rl (ghag gk,

and

- k -
OPL (f B = Y <k) OEPII (£, ).

kelpbf(b',l(k})

65", 8> 0and |k < S0, i, then Pttt =1 _ plresr=Ikl o q gplienis, gy =
(’9,’55[[0’ . P.(fa,...,fp) in that case.

We define . .
1(8) = {ce[[l,nflﬂ;25j>0 and Y ﬂj>0}.

j=1 j=c+1

14 — Proposition. For o > Z;;l Bj — 0o, we have

(A PLY(Fry o )iy = PE(fr, o fu) L (- + h) — TEPL (Fr, .. fa) {4}
k

h ~ .
-y ¥ 8fBSL_P<(f1,...,fC)H(Ai,oi‘k‘Piﬂ)(fﬁl,...,fn){z},

cel(8) kl<X5_, B

Proof — Recall that for k € N% and k € P;_; (k)

B(k,0) = (51 — k1], ... Bi—1 — |kj—1], B —o+ |k|,»3j+17~-~,ﬂn>~

We are going to apply Lemmawith the tuples a and S(k, 0), which verify indeed S(k,0), <
ag for any 1 < a < n. Moreover for a > j we have 8(k,0), = g, and as consequence
Cut(B(k,0))\Cut(a) C [1,5 — 1]. Then Lemma [13] gives
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pAk.e) (8’“11‘1, 0%y R (4 k), --){i}
= ﬁfi (6k1f1, e ,8’“*11‘];1, Rzilk‘fjﬁ fj+1(' + h)7 .. ){Z}
o Z ﬁiﬁcvﬂ(kvo)ﬁc (8k1f1, ce, 8k5cfc)
ceCut(B(k,0))\Cut(x)

x Pl delae (gheif oy, By, £ (4R ) ()
=P (0", 05, Ry M (e m), ) ()

- 3 or=P(f )

ceCut(B(k,0))\Cut(B)
x poreflho)>e (akcﬂch, 0 R (4 b, ..){i},
where we used that
plllbolselice (gha, . obef,) = PLROIe (ahify .. aef,)

since Y ;_, B(k,0); > 0 for ¢ € Cut(B(k,0)).
We now sum over j, k and k and invert the sums over ¢ and j. In order to implement this sum
inversion we use the inclusion Cut(,@(k:, 0))\Cut (6) C I(B). This gives

~ n k| plo—Ikl _
(BnoP2) (Fr )i =D ) % P2 (a’flfl,...,a’fjflfj,l,
j=1  |k|<o ’
keP;_1(k)

Ry, £+ 1), ) ()

n hk|h|of|k\ .
=D > X OFP_(f1,... f.)

i=1 |k|<o " ceCut(B(k,0))\Cut(B)
keP;_1(k)
x BP0 (gherfyy gy Ry, (4 R), ) ()
= Z Ea*P<(f17...,fc)
cel(B) |k|<327o, Bi
keP._1(k)
n hP|hlo—IkI=Ipl
% Z Z ‘ |p' P[i>cﬂ(k’70)>c (aplchrl,»~~,apj7C71fj717
j=etl  p|<o '
PEPj_c—1(p)

B (4 ), ) ()

hF _ ~ ~ )
S o P (Fry o ) (Do ko PZ9) (Fogrs - - Fu) (i)
cel(B) [k|<, B
The result follows from this identity. >

15 — Lemma. For0<c<n-—1, foroy > o1 > Z?:CH a; — 0o, we have

= : She. : R* e=pe. .
(BhoaPZ) (Fesrs o )i} = (Do, PE) (Fesn, o F) i = o P (f oy, . F){i}

01<|k|<o02
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Proof — The proof follows the same induction as for Lemmal[I0} The result is true for c = n—1

as A oP2 coincides still with the Taylor remainder |h|°R3. Suppose it to be true for (n—c—1)
functions. Proposition [14] gives then

(DhosPZ) (Ferts oo ) (i} = (Do, P2) (Ferts -+ ) {3}
=TPP2e (forn,. . ), — TP PZe (for, .. ),

hP

- > > 61*0P<(fc+1,...,fj)E

FENB>e) [pl<XI_ 1 Ba ’

BB> . pB>i .
<A (Bos P2 Eis - F) {1} = (BnorpPZ) (41, ) (1}
From the induction hypothesis this quantity is equal to

hE o~ _ hP
> HakPgﬂ(fc_i_l,...,fn){z}f > > EafP<(fc+1,...,fj)

01<|k|<oz Jel(B>e) pl<>i_oiy Ba

R~ ,
x Yy E@fpiﬂ(fjﬂ,...,fn){z}

01<|l|+|p|<o2

h* k
01 <|k| <02 keP,_ (k)
where

Apyi = P2e (05, ..., 0Fn—eF, ) {i} —

S Pl M gk kg, ) BE P M i 9ee, ) (i)
JeCut(f>c—|k)\Cut(f>c)

Lemma [13| gives

Ak,i = ﬁ[i>c,5>c*|k| (8k1fc+1, ey 6k”’_cfn){i},
and the result follows.

For 0 < a <n—1 we define

(DyePL) (farts- ) = (Dywsn 5, PL) (Fagr, .o ) (2);

From the same arguments of Section |2} for o in a neighborhood of 2?21 B; one has the estimate

(2P Cuproeo s E) (Y] S TLIG N, by — alo2 #0520
j=1
where

(Ayzpi)(fa-i-h B 7fn){l} = (Ayfx,Z?:aJrl B Pi)(fa-‘rla R ’fn){l}(l‘)
Then Lemma [11] gives the estimate

n
(@B oot £ TL I, bl = ol
j=a-+1

16 — Proposition. Pick = (P1,...,8,) € R" with Z;.lzl B >0 andf; € co for1<j<n.
Then we have the local expansion
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PLfL, .. f)y) = Y OFPL(F )@ =2t
<\U1,...,T)(Y) = x T <\Ily-eesln k!
k<SS By

n—1

5 (y—a)* =
+> afpi(fl,...,fc)(x)Tawpi(fc+l,...,fn)
=1 |k|<35_, By '
+ AP (FL, L E).

n
S { H ||fj||ﬁJ } |y - .’E|Zj:c+1 Bj.

j=c+1

(3.1)

where

‘(Aymﬁi)(fﬁh )

Proof — We proceed as in the proof of Proposition[I2] Proposition[I4]and Proposition [T5] give

~ ~ hE <
(DyaP2)(Fr,. ) =PE(fL . )+ h) = > FakPﬁ(fl,...,fn)
[kl<o

~ hP ~
-3 ¥ BfP’i(fl,...,fc)H(AyIPi)(fC“,...,fn)

cel(B) Ipl<X5_, B

hP Rt < ~
-y S S OPL(fL L ) OLPE (Fugs . ).

p! L
cel(B) |pI<>5-1Bi
M|>Z;’l:c+1 Bj
From Lemma (13| we have for any |k| < >7_, §; that OFP(f1,...,f,) is equal to
~ k ~ .
OPL(Fr,.f) = D > <p> OPPE(fy, ... f) OF PPE (Fiq, ... Fn).
cel®)  Ipl<X_, B;
[k—p|>>27_ .1 Bi
This identity concludes the proof. >

4 — The regularity structure of iterated paraproducts

We fix @ € R™ in this section. We introduced in Section the spaces T and Tt of symbols
of the regularity structure that we will associate to some iterated paraproducts. The vector
space T is spanned by

B:= {[[a,b]]gXp}
and the algebra is generated by
+i= {[a,0]t } Xl
B {[[a’ ]]e condition(a,b,k,£) U{ }1S1Sd,

where one says that (a, b, k, £) satisfies condition(a, b, k,£) if 1 <a<b<n, k= (ka,...,kp) €
Po—a+1(k) for some k € Ndo, and £ € Pyp_q () for some £ € N and we have

max(|k|, [€)) < Y oyl

U {Xp}peNdo

1<a<b<n, LEPy_4 (L), LEN?0 peNo

and

|[[a,b]]’§|a > 0.
We introduce in this section some splitting maps A : T - T QT and AT : TT - T® T and
prove in Proposition [17] that ((T,A), (T, AT)) is indeed a concrete regularity structure. We
refer the reader to Appendix for some basics on the subject.
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We use below the notation
M((O‘l ®09), (X™ ® XmQ)) = (01 X™) @ (02X™2).
For 7 = [a,b]e € B, with £ = ({g,..., ), we set
®(r) = {[[a,c]]f<n €EBT;a<c<ble=0,pEP. ui1(p),pE Ndo} u{1t}.
For 7 = [a,b]s € B and o = [a,ce. . XP € ®(7) we define (7\17) = 7 and if ¢ < b — 1 we set

DD

P=p1+P2 p1 €Pp_c(p1)

prTpatpt [+ bl X7

and for ¢ = b we set (7\0) := i XP?. For p € N we set

AXP) = AN(XP) = Y (;)X’“@X”z.

P1+p2=p
We define the map A on T' by setting
A([[a,b]]gXp) = M(A([[a,b}]g), A(Xp))
and for 7 = [a,b]e € B
A=Y Moo
oe®(T)
For u = [a,b]k € BY we set

@(p’) = {[[aac]]kSC7a+1+P € B+ ja<c< bagc = Oa pec Pc—a+1(p), pe Ndo} U {1+}

e<c

For yu = [a,b]f € BT and v = [a, c]]k<r P o () with p € Pe_qgi1(p), we define for

c<b-1
k>c—a
PIUTEED SRR S S AR C I S
P=pP1+P2 p, €EPy_c(p1)
and for ¢ = b set (7\o) = iXp. All the terms in this sum have the same homogeneity

[le+1 b]]k>° “*')4 + |p|- We define the map AT on T+ by setting
A ([a, 01 X7) = M (A ([a, bE) , AT(X7))
and for p = [a,b]% € BT
A= Y wer

veD(n)
[(1\V)]a>0

With the notation of (4.1)), the condition |(4\v)|o > 0 means that we only consider here those
v € &(u) such that [[e+1 b]]l>c 1), > 0.

17 — Proposition. The space ((T, A), (T, A*)) is a concrete reqularity structure.

In the proof of this proposition we use the following generalisation of the Vandermonde
identity, which states that for any integer ¢ > 1, for any p, ¢, r in N% such that p+q=r,and
any r € P;(r), one has

7! 7l
> oTal = Ta (4.2)

PEPi(p),q€Pi(q)
p+g=r

Proof — We prove here that we have the comodule identity
(A®I)A = (Id® AT)A.
The proof of the coassociativity identity
(AT @Id)AT = (Id®@ AT)AT
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is almost identical and left to the reader. We also let the reader check the other conditions
involved in the definition of a concrete regularity structure spelled out in Definition in

Appendix
It suffices to prove the comodule identity for 7 = [[a,b]e € B with € = (¢,,...,4,). To lighten
the computations we use the convention [c¢ + 1,¢] = 1Y) for any a < ¢ < b. We have

k! ’7
A(fa,0)e) = > 1 E ! ([[C+ 17bﬂz>c+k1Xk2) ® (la, i)
ckika ket T

where the sum runs over the a < ¢ < b such that /. = 0 and the multi-indices k = k1 + ko such
that |[a, c]]f<c|a >0, over k1 € Py_c(k1) and k' € Po_qt1(k). Then (A ® Id)A(7) is equal to

k'p' ko1+
D2

Z KN K1 kar! koo ' pr! pa! [+ 1, b st ) pmamn X

¢,k1,ka k'

d,p1,p2,p’

® [[C + 17 d]]g[[c+1‘d—l]]+( an ® [[a” CH§<C.

ki)<p—a
where the sum runs over 1 < ¢ < d < b such that ¢. and ¢4 + (k1)4—. are null, and the
multi-indices k = k1 + ko, ko = ko1 + koo, p = p1 + p2 such that

la,cls_.|, >0

and

p/
H[C +1, d]]z[[c+1,d—l]]+(k1)§d—c o 0

and p1 € Py_a(p1), P’ € Pa_c(p). On the other hand (Id ® AT)A(7) is equal to

k!'p! /
ko kse—at1 P2 k<e—at1+P

Z K"k ko p'lpi!po! [e+ 1,000 cth X7 @ e+ 1, C]]l[[e+1,c—1ﬂ+PlX ® [as el ’

¢, k1 ka2 k'

d,p1,p2,p’

where the sum runs over a < e < ¢ < b such that . = ¢, = 0 and multi-indices p = p1 + po
such that p’ € P._q41(p) and

k<e_ai1+D
H[a,e]]lfe TP |a >0
and .
H[e + 1’cﬂl[[>e:1,c_1]]+p1 |a > 0.

Both sums take the form

k1,k2, . !
Z Cpl,pz,g' [[d +1, bﬂl>d+k1Xk2 ® [[C +1 d]]z[[c+11d_1]|+p1 X [[a> C:HZ<C’

c,k1,ka2,q

d,p1,p2,q’
where the sum runs over a < ¢ < d < b such that ¢, ¢; # 0, over multi-indices and tuples of
multi-indices k1, k2, q, p1, p2, ¢’ such that the first two terms in each tensor products are in 7'+
and ¢+ ¢ = ki + k2 +p1 +p2 and g < ky + ko.
We check that the constants CF*2:7 coincide in both expressions using the Vandermonde

P1,p2,9
identity (4.2). Both are equal to
k1,ka,q 1 k'q"
Pup2d T oy L kol pilpelglq! g
This concludes the proof of the statement. >

We note that Hoshino was the first to investigate in [I0] the algebraic structure behind the
iterated paraproducts, in a restricted setting compared to the present general setting.

For 7 € T, one can re-index the sum defining A(7) by its different components 71 on the
canonical basis B of the T factor in T'® T and write
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A(T) =: Z 71 & (7/71).

T1<T
(This identity defines (7/71).) Below we write 71 < 7 to mean that 7; appears in this decom-
position and 7 # 7. Similarly we can rewrite

Aty =Y m®(u/ m).

(This identity defines (u/%p1).) Below we write g1 < p to mean that u; appears in this
decomposition and p1 # p.

5 — Local expansion properties of iterated paraproducts

We prove Theorem [I]in this section. The core of the proof rests on a representation formula

Pelfar - f) =30 3 P<(lr/mlf )

c>0T1,...,Tc

of the P, operators in terms of the P operators and some functions [¢]¥ that we build from
f = (fas---, fo)- One can then infer the local expansion properties of Pg(fq, ..., fp) from the
local expansion properties of the P operators obtained in Section [2]and Section[3] We describe
in Section the generic construction of some bracket maps [o] if the initial data is a pair of
maps (I, g) of a particular type. They will be specified in Section in terms of a fixed tuple
f = (f1,..., fn) of distributions. The actual proof of Theorem [1| occupies all of Section
The inductive mechanics of this proof is detailed at the begining of this section.

5.1 — Building blocks for a representation of P in terms of P.. Recall from Appendix

@ the basic notions and notations on regularity structures. For any integer ng define Z,, as
the set of C™ functions ¢ supported in the unit ball of R% and such that ||¢|

cno < 1. Given

a pair of maps (,g) with I a linear map from 7 to D'(R™) and g a map from R into the
set of characters on the algebra T, we define

N, = (N®g)A
for any z € R%. For a real-valued function ¢ on R™, z € R® and ¢ > 0 we define
Po(y) = Pp(e Ty — ).
We define the size (1, g) of (M, g) by setting first for 7 € T

I7l(ng = sup sup sup e I"I[(M,7, %),
2€RY0 pEZn, £€(0,1)

and for v € T‘J;I

8y (V)
Wl = sup o == r,
z,yeR0 ly — x|

and recursively for 7 € B(H)
Iling = max (I, mas Ir/olngloling):
and then by defining
M, g = max (Il g) - lallng ).
for a maximum over 7 € B and u € BT.We have

N(r) = Z go(7/m1) Na(71),

T1<T

that is
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M. (r) =N(1) — Z g (7/7m1) Ny (7).

T1<T
Iterating we obtain the formula
My (r) =N(r) - Z(_l)e_l Z go(T/71)  + ga(Tq—1/7e) M(7e), (5.1)
e>1 Te<l - <T1<T

where the sum over e is finite as the sets A and A" that index the homogeneities of the regularity
structure ((T, A), (T, A™)) are locally finite and bounded from below. Likewise for 7/p € T

gy (7/0) = &(7/p) — 82(7/p)

_Z(_l)e_l Z gI(T/Tl) "'gw(Te—l/Te) (gy(Te/Tl) _ga:(TE/P))-

e>1 P<Te<:<T1<T
(5.2)

For 7 € T we define an element [7] = ([7];);>—1 of C™° setting

[Flo=ANE) = DD Y Acica(g(r/m) - Acica(g(rg—1/7e)) Ai(M(7e)).-

Likewise for 7/p € TJ_r we set e
[r/oli == Ai(g(r/p))
=2 DT Y Acale(r/n) - Acica (g(ra1 /7)) Ai(g(7e/))-

e>1 P<Te<:<T1<T

18 — Proposition. For any 7 € T\;| and 7/p € T‘J;/p‘ we have
W7y =+ /701 < A, 8D,
so [r] € CI"l and [7/p] € CI7/Pif (N, g) < oo.

The proof of this statement uses the following result stated in Proposition 8 of Bailleul
& Hoshino’s work [4]. We denote below by K;(z — y) the translation-invariant kernel of the

Littlewood-Paley projector A; and set

19 — Lemma. Let F = (F,),cra be a family of distributions on R indezed by R%. Set
(QiF)(2) = /K<i_1(z ) Fa(Ki(z — ) de

and assume that _
[QiF||oc < Cp27"
for some positive constant Cr and r1 € R. Let G be a function on (Rd“)2 such that we have
|F(z,y)| < Caly —=|™
for all x,y, for some exponent ro > 0 and some positive constant Cg. Set
(QFF)(2) = [[ Keima(z = 0)Kcima(z = y)F(,y) dady.

Then QF = (Q;F)i>_1 € C"* and QTG = (Q} G)i>_1 € C"2 with
1QF,, + HQ+GHT2 SCr +Ce.
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Proof of Proposition — We proceed by induction. For 7 € T}, and 7/p € T;/p‘ we set
Frp = N,7 and G, /,(2,y) = gy (7/p), for all z,y € R®. Writing
Mo =Tn,7+ Z g.2(7/0) Mo
o<T
we see that

(QiF;)(2) :/K<¢71(Z—33)(r|z7)(Ki(Z—'))d$+Z/K<i71(2—$)gzx(7/‘7) (N.0)(Ki(z—))dx

o<T
with
(M) (Ki(z = )| S 271 Im [l g
uniformly in z, with a similar estimate with ¢ in place of 7, and

/ Koot (2 — ) gea(r/0)|dz < 277717/ g)-

It follows that 4

[QiFr [l < 2=l maX{HT/UH(I'I,g) ;0 < T}7
go we get from Lemma that QF, € CI"l with |QF:,, < max {|7/cl/(ng; o < 7}. Note
that

QF, = A7) =3 (-1 3 Aia(e(r/on) - g(0e1/00)) Au(o).

e>1 < <01<T
On the other hand one has directly from Lemma [19{that Q+ G, /p € ClI7/Pl with norm bounded

above by a constant multiple of ||7/pl|(n,g). We actually have from (5.2 the following formula
for

(Q+Gr/p)i = A<i71 (g(T/U))

Yt Y {acn(er/e) - gloe/o0) ) Acica(gloc/o)

e>1 0<L0e<<0o1<T

~ Acica(g(r/on) - g(0er /o) gloe/o) ) |
It follows from induction that ((Q*G-/,)[pli),- _, defines an element of C!"l with norm bounded
by a constant multiple of (I, g). The conclusion of Proposition [I8| will the follow after we check
that

[l = QiFr + Y (QF Gr/o) [0l (5.3)
o<T
To see that one has this identity we notice that for any o < 7 one has
(QjG'r/cr)[o-]i = Z <_1)61+62A<i71(g(7/y1>-.-g(yelil/yel))A<i71 (g(V€1/U))

e1,e2>0
Oy < <OV < <T

X Acio1(g(0/01)) - Acic1(8(0es—1/0e,) Ai(N(0e,))
- > ()2 AL 1 (g(r/v1) - - 8(Vey —1/Ve,)8(Ve, [0))

e1,e2>0
0'52<"'<0'<l/el<"'<7'

X A<i71(g(‘7/0—1)) s A<i71(g(05271/062))Ai(rl(o—ez))V

so summing over o < T one recognizes a telescopic sum which simplifies indeed to ([5.3)). >
5.2 — A representation formula. We fix here a tuple f = (f1, ..., fn) of smooth functions
and prove in Propositionbelow that one can represent any Pg(fq, - .., f») as a sum of P terms

involving the bracket functions [r] constructed in Section We prove a similar representation
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formula for ﬁga’bﬂ_‘k‘ (0% fy, ..., 0% fy). We need some preparatory results before stating and
proving Proposition 22

As in (1.5, (1.6) and (1.9) in Section [1| we associate to f the pair of maps
MmFe = mFf = (|-|f7gf)
where
N7 ([a, b1eX?) () := v" Pe(far - - o) (v)
and B el
g ([a, 0] X ) (y) = y? Py (0" fay .. 0" o) (y).
We denote by []7 the bracket maps associated to (M¥,gf). For each [a,b],X? € B we define
an element (N¥([a,b]eX");),._, of C°F by setting

N7 ([a, bleXP)i = AY (Pe(fa, . fo)-
Likewise, for [a,b]f X7 € BT with k = (kq, ..., k), we define an element (g ([a, b]§X9);)
of C° by setting

i>—1

g (Lo BIEX ) = AL (P (0% fu o 0 ) ).

For 7 > 0 we set

g7 ([a,b]EX)<; Z g’ ([a,0]EX 7).
1=—1
The statement of Proposition[22|below, and the next two preparatory results, require a notation
that we now introduce. For 7 = [a, b],X? € B we write

o<1ifo<7and o= [c,b)eX? with c> a.
We also write
J§Tif0<7’butnoto-<7.
For a descending sequence o, < --- < 01 < 7 we have 0 = [a,b]X? with 0 < p. <--- <
p1 <p,and 0;/0j41 = (p,+1)Xp] ~Pi+1, For pu = [a,b]5¥X? € BT we write

vpifrv<pandv= [[c,b]]z,Xq with ¢ > a.

20 — Lemma. We have for Te€T andi>1

nf(T)i = Ai(nf(T))*Z Z A 1 T/Ul)) S A<i_1(gf (06_1/06)) Ai(l_lf(ae))
e>1 ooSoSo <y
o (5.4)
and for 7)o € T witho < 7

gf(7/0)<i71 =
A<i71( (T/U Z Z Ao 1 T/Ul))"'A<i71(gf(0-efl/ge)) A<i71(gf(0'e/g))-

S et

0<0¢

(5.5)

Proof — We consider first the identity (5.4). Denote by (x);(-) its right hand side. It suffices

to treat the case of 7 = [1,n]¢X?. One has 7/0; = (If’l)Xp_pl and 0;/0j41 = (pfil)pr_le

for 1 < j < e — 1; moreover for k € N% we have Acio1(gf(XF))(z) = 2 for all i > 1. Tt
follows that (x);(x) is equal to
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AL AleXP) (@) - S Y H(p Jarme (07 (11 o) ) )

e>1 0<pe<-<pi<pj=1 Tl
= AZ-(I'If([[l,n]]gXp))(x) - ZCPT xp_TAi(ﬂf([[l,n]]ng))(x)
7<p
where
=Y Y II(”)
e>1 r<pe_r<<pr<pj—0 “Pitl

We note that the constants Cp, satisfy the inductive relation

p p
Cpr = - (7’) + Z (S> Csm
r<s<p

)

r

SO

One then has

(#)ilw) = A (N ([1,nLeX?) ) (2) + > (1 ( )xp "2 ([1,n]eX7) ) (@)

r<p

= Kiy-uz) i ( )xp "y Pe(fi e fa)(y) dy

R%0

=nf (1) ().
One uses a similar reasoning to prove identity (5.5)). It suffices to treat the case 7 = [1,a] X7
and o0 = [n+1,a]e., +sX? One has in that case

T/U:ZM( )[[1 nlpt X"

S1,T

r=

where the sum runs over the multi-indices s1, 7 such that p = g + ||s]| +  — s1 and such that
[Lin]p, € T+ and r > 0. We write D, , for the set of such sy, r. Writing (%x);(-) for the right

hand side of (5.5), we have this time

o) = X et (1) Aen (0 ([l x) )@

(s1,7)EDp,q

"X X (L)t (Vo)

p'<p (Sl,’l“/)EDp/yq

-z M( ) (001030

(s1,7)€Dp q
_ r—r’ r—r' [T ) f s1 vr )
> X aeten (e e (D) s (0 @agx)) @)
(s1,7)€Dp,q 7' <r
where we used that, for any fixed s1, if (s1,7") € Dy 4 and (s1,7) € Dy g then p —p’' =r — 1.
This gives indeed gf (7/0)<;_1. >

21 — Corollary. For any T € B and i > 1 we have the relation

[T]zf = nf(T)i - Z(_l)eil Z gf (T/01)<¢71 o 'gf (06/06—1)<i71 nf(ge)i'

e>1 Oe<<01<T

Likewise for /o € BT we have
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/ol =&l (rjo)i =D (-1t X0 el (/o) e (oefoen) 87 (00/0),

e>1 0=0e<"+<=01=<T

Proof — Plugging the identity of Lemma giving M and gf into the right hand of the
identity to prove, developing the products, one recovers the definition of [r]¥ and [r/o]f by
noting that any descending sequence 7, < --- < 7 < 7T takes the form

S T30 =R Toey S ST < Tl S ST ST

The conclusion follows. >
22 — Proposition. For any T = [a,b]¢XP € T we have

AP(Pe(far o fo) =D > Pt/ [o]F), (5.6)

e>0 o< <o1<T

and for o <1 with /o = [c,d]% X9 € T* we have

Ag(ﬁ;ﬂc,dﬂ_‘k‘(akcfc7... ,akdfd)) :Z Z P([r/on)f, .. [oo/0)f),  (5.7)
e>0 0<0e<<01<T
Proof — We prove (5.6)) and let the reader prove (5.7) as its proof is almost identical. We
proceed by developing the sum

Z Z P<([T/Ul]fv"' 7[0€]f)2‘

e>0 oe<-<0o1<T

and use the identities of Corollary [21] to see that a number of cancellations give in the end
nf(T),L
A non-increasing map 7 : [0, e] — N is said to be admissible if it is such that w(e) = 0,7(e—1) =
1 and 7(j) —7(j + 1) € {0;1} for every 0 < j < e — 1. For any such 7 and any integer
0 < m < m(0) we define j,(m) as the smallest integer j such that 7(j) = m.
We associate to any ¢ > —1, to any descending chain v : v, < --- < 1y = 7, and to any
admissible 7 the element of C~*°
e—1
QTF(T/Vla"'7V6—1/V67V6)ie = Z Hgf(yj/yj-‘rl)ij nf(ye)iea
(ij)o<j<e—1€Dx i, =0

where
DTF,ie = {(ij)oﬁjﬁe—l € [[_15 +OO[[6’ Vj € [[0,6 - lﬂv ij < ijw(ﬂ'(j)*l) - 1}'

For every descending chain o : oos < -+ < 7, from the identity of Lemma 20| giving [0} /0j41]
and [0.] in terms of g and MY, developing the products gives the identity

P ([7/01], ce [O’e/])i = Z A0 Qr (T/I/l, e l/e)i.
v,
where the sum runs over the set of descending sequences v, < --- < vy = 7 and the set
of admissible maps m, and where \%™ = 0 except if o is a subsequence of v of size e’ such
that 7(0) — ¢’ € {0,1} and oe'—y = Vj () for every 0 < m < ¢/, in which case we have
AT — (—1)¢~¢ Then

Z Z Po([r/o],-- ,loer]), :Z Z Z/\”’ﬂQﬂ—(T/Vl,-'- V)

e'>0 o4 <-=o1<T e>0 V<< <7 T

where \¥'™ = 3" A" for a sum over the set of finite descending sequences o : gr < -+ < 7.

We actually have A¥'™ = 0 for every non-empty sequence v. Indeed for any given v # ) of size
e and any admissible 7 there are only two descending sequences such that A%™ # 0. These
sequences o! and o? are of size 7(0) and 7(0) — 1, respectively, and

Ty = Vi (x(0) —m)
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and

T = Vi (x(0)~1-m):
The two coeflicient \%'™ for these two o are of opposite sign, which implies indeed that A¥*™ = 0.
>

Last, before turning to the next section, we recall a variation on Lemma 6.6 of Gubinelli,
Imkeller & Perkowski’s work [7].

23 — Lemma. Let N be a linear map from T to D'(R™) and g be a map from R™ into the
set of characters of the algebra TT. The pair (N, g) is a model iff one has both

(Mo, K )| S 27017 (V7 e B) (5.8)
uniformly over i > —1 and x € Rdo, and

gy (| Sy — =¥ (VpeBY) (5.9)

uniformly on (x,y) in any compact subset of R%,.

5.3 — Proof of Theorem |1, For 7,0 € T and a descending sequence o(e) = (g, < -+ < 01)

we write
0<a(e)<rif(a<aeand01<r)

and set
/o (€)la = (I7/01]as -+ s|oe/ola) € RET
We prove by induction on n the following three facts at a time.

(a), For any tuple B = (8;)i<j<n € R" such that Z?Zl B > 0 the map
(917 oo ugn) = ﬁf(gla cee 7gn)

. . n i .
has a continuous extension from Hj:1 C’f] into L*°.

For any tuples a = (a1,...,ap) and f = (f1,..., fn) of smooth functions:

(b),, for any homogeneous T = [a,b], X? € T we have
(NI Koia)| S W fallg, - Ifll, 277171,
uniformly over x € R% and i > 0;
(c), for any homogeneous T = [a,b]§ XP € T+ we have

gt (D] S Wfallg, - 1follg, 1y — /=,

uniformly over x,y € R,

Theorem [I] follows as a consequence. The result holds true for n = 1. We will use in the
induction the following two algebraic identities proved in Appendix [A.3.2]

24 — Lemma. We fiz a tuple f = (f1,..., fn) of smooth functions.

(i) Pick k € N™ with k € P,(k). Set O%f = (8" f1,...,0% f,). We work here in the
reqularity structure I, _ | with the pair of maps (I'Iakf, gakf) and its associated bracket
maps [12°F. For v = [1,n]eX™ € T with |k| < |[1,n]e|a we have

Sit/o(e)|a— k k ~a—

S>> BT (o[ ) = L Py (@8 1 05 ).

e>0 oe<--<01<T

(ii) We work here in the reqularity structure J, with the pair of maps (N¥, gf) and its
associated bracket maps [-}f. For /o = [1,n]fX™ € T+ and |p| < |7/0|a we have the
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identity

Z Z Z <11';) ”|5\<T/U(e)\r|p|(apl[T/Ul]f7...,3pq+1[ae/g]f)

e>0 o<o(e)<T pEPet1(p)

:1m_0{ D ( )( ) po—lk+p] (ak1+p1f 75kn+pnfn)}.

keP, (k) pEPr(p)

We proceed with the induction step

((a)nfl, (b)nflv (c)nfl) = ((a)n, (b)na (C)n)

~ We begin by proving (a),. Pick 8 = (B1,...,8,) € R" with >, 3; > 0. We work
with the regularity structure F3. For £ = (£1,...,0n_1) € (R™)* L set £~ := (£1,...,0n_3)
and
T (€) == [1,n — 1] - X1
Write [n] for [n,n] € T and [n]9 for its associated bracket map. From the continuity result of
Proposition [6| for the E’Z it suffices to prove that

Po(gryeegn) = S PO (1 0) /o]0, [0, []9) (5.10)

€20 ge<--<7p(£)
where
@)/ = (1@ /0115, 101/02las - Vol ).
the symbol + meaning that we added j3,, at the end of the uplet |7,,(€)/o|s. Indeed, if one has
, the induction hypothesis and Propositionthen ensure that any term [v]9 appearing in
the right hand side of is an element of C/¥! that depends continuously on g € [T, o
Since

70 (0)/01] + o1 /02lp + -+ oels +Bu =D _ B >0

we can use Proposition [6] to conclude that (a), holds true.
The remalnlng of this paragraph is dedicated to proving (5.10) by induction. The recursive

definition of the P% given in Lemma |8 writes here

DD DA (V) VEN RSN EA LA )

€20 g =<--<7y(£)

=Y P (@) [0 0l

€20 ge<--<71,(£)

_ Z Z ﬁgn(l)/d‘ﬁ([Tn(z)/o_l]g"”’[Uel/o_]g) (511)

0=<Tn(£) 0=<0eq <=7 (£)
|o]g+Br<0

< Y PIT ([0 /1)9, ... [vea)9. [n]9).
Vey <X+"=0
From Proposition [22] one has
S Y Pe(m®/a),. . [0 [0)9) = Pe(gr,- - gn)-
e>0 oo <=7 (£)

Since any o < 7,,(£) has the form o = [m+1,n—1]¢4,, XP27°2, one has 7,,(£) /o = [1, m]5 X **,
with £,—1 = s1+ 82 and p = p; +po. If s; = 0 item (i) of Lemma [24] ensures that the sum over
the descending sequences o < ¢, < -+ < 7, (£) is null. The terms o < 7,(£) that may give some
non-trivial contributions to the sum are thus of the form o = [m+1,n—1]gy,, XP2Hn-1,
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for which 7,,(€)/o = [1,m]}, with p; + p2 = p. For such o, item (7i) of Lemma [24] gives

S RO (@)oo o)) = Y <£)Pf<<:: Kl (gigy, ..., 07 gyn)

0=0eq < =<Tn(£) PEPm(p)

and we have from the induction hypothesis

~lo /T =
Z P‘</V o ([U/Vl]gﬂ s [Vea)?, [n}g) = Pim»pz (£>m) (ngrl’ o ’gn)

Vey =<0

where

k
Iprps(om) = Z (p1> ( ) (U1 4 a1, a2+ Gnom—2,ln_1 +D2).

aj \pP
a€Pn_m—2(p1)

We recognize then in ((5.11)) the recursive relation satisfied by the ﬁf , which proves (5.10).

— We now turn to (b),. We would like to implement the same strategy as in point (a),:
Write an iterated paraproduct as a sum of simplified iterated paraproducts and use their local
expansion properties.. The problem with this strategy is that Proposition [6] requires some
positivity assumption on some regularity exponents to hold — which does not necessarily hold
true here. To circumvent this issue, for any r > —1, we look at the expansion properties of the
iterated paraproduct P, (fl7 ooy fet, Ar(fn)) and treat A,(f,) as a function of high enough
regularity in the estimates. We verify a posteriori that the remainders are summable over
r > —1 and provide the right expression.

We use the same notations as in the proof of point (a),. Pick «!, > «a;, big enough such that

Z::_jl as+al, >0 forall 1 <j<n. Set
o = (ah"')an—l?a/n)

and, for any r > —1, let

fr= (fla"'7 n—17Ar(fn))

’

and
M™ = (1", g") :== M/
(The last notation was introduced at the beginning of Section [5.2]) One has
Pe(fiooo s Afa) = S AZZY (Pe (fio- - Fam1)) i (An(f)

i>—1

=YY Y Pe(@/al™ o)

i>2—1e>0 ge<--<1(£)
LYY Pe(b@e ).
e>0 g <-<7y(£)
From Proposition [18| and the induction hypothesis, every term [o] appearing in the paraprod-

uct P. is an element of Cl°l that depends continuously on f € {H" ! Ca’} x Com. The
assumption on o/, ensures that the homogeneities of the element in the iterated paraprod-

ucts P ([Tn(ﬂ)/gl]MM, oM [n}MN) add up to a positive quantity, however |o¢|o may be
non-positive. This is cured by noticing that the assumption on «/, ensures that
T/ T/ T Sl (£ ot o ! T T/
P (@)oo fo M M) = PO e ([ ) /Mo M M),
(5.13)
where

‘Tn(e)/a'ﬂa’ = ( 170(£)/01lars l01/02]ary - |0c|ar, o, )a
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so one can use Proposition |16/ on the local expansion of terms of the type ﬁl The remainder
term in (3.1) is (Ay—z,0PL)(...)(z) with 0 = Z?:l v;. We infer from this generic expan-

sion property, (5.12) and (5.13), that Pg(f1,...,A,(fn)) has a corresponding expansion with
remainder

Y (ByeadP ) (oM oM [n]M”) (x),

€20 o< <1, (£)

with 0 = Z? 1 a — 0, here. The following result is proved in Appendix |A.2| by induction on
n.

25 — Lemma. For every point x € R% andi> —1 one has the identity

KoY. 3 (LnePr @/l ([an) Jo M, oM, [n]M’”) (x) dh

d
R0 €20 ge= <70 (L)

= K<;(h)(M%'[1,n]e) (z + h) dh.

R0
(5.14)
We then have from (5.14) and Lemma 6.3 in [7]
[ Ko (o] < { T Tl b, 2
. (5.15)
5 9—if 27“(04;10471){ H ”fjHa,» }
j=1 '
There is an integer i(n) depending only on n such that we have for j <n and i > —1
Ai(Pe(fio- f)) = D Ai(Pe(fir-- - fi—1. A(S))).
r<i+i(n)
Using the identity (5.1]) on MM, (7), we see that we have
(Malltnle), Keia) = 30 (M3 ([ 7)), Kcia ),
r<i+i(n)
so the expected bound
n l+l(n) ’ . n Rwid
(M ([, 7le), K< )| { 11, } Y e 97t < { TT150.. }2—@1
j=1 r=—1 j=1

follows from (/5.15).

~ We finally prove (c),. Pick a = (a1,...,a,) € R", a multi-indice k¥ € R* such that
|k| < >0 a; and k € Py (k). We work in the regularity structure J,_ . From item () of
Lemma @ we have for any smooth functions f1,... f, the equality

Py M@ o) =3 > BT (e M o],
e20 o.<---<o1=<[1,n]e
where Mg = Mgk ¢ _i|- Proposition |18/and point (b),, ensure by induction that all the terms
[V]M# are some elements of Cl“le~% that depend continuously on all the f; € C5”. As above it
follows from Propositionthat ﬁa_lkl (6”“1 fi,..., 0% fn) has a local expansion with remainder

Rpa(lnlf)@mi=3 3 (andPE ) ([onlefor M, o) @)

e>00.=<---<[1,n]e
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where 6 = |[1,n]¢|q—|k|- From Proposition (16| this remainder has |h|’ H?Zl Il fll,,. as an x-
J

uniform upper bound. Point (¢),, will thus be proved after we show that for any 7 = [1,n]X*

one has

S (@naPI T (/o] oM ) (@) = Limo g ([L0DE). (5.16)

e>00e=< =T
The remainder of this paragraph is dedicated to proving this identity by induction on n. Recall
that we write

PP~ ([T/O’l]Mk, . ,[om,l/am]M‘“)
_ Z <p) ﬁz/agmlai‘k‘ilpl([T/O'l]Mk7--~7[O'm—l/Um]Mk)-
PEPm (p) p
From the definition of Ah79|5< the left hand side of (5.16]) is equal to
DD DA (N LN P L T

e>0 o< <T

-S> S P ([r/on]™, . o™ (x) P

e20 oe=< =7 |p|<|T|a— k|

) Z > 35P<([T/U1]M‘z-..,[omfl/om]Mk)(x)

e20  m=1|p|<|7/om|a—|k|
Oe<:+<T

X1 Bt P (lomfoma M [ (),
(5.17)
From item (i) of Lemma the first double sum in ([5.17)) is equal to

Lo P (@ fro 07 fu) (@ ) = Lemo g1, ([0 DF)-
Lemma [24] also gives that the second line of (5.17) is equal to

13:0 Z g/ ([[1 nﬂk-&-p)

[PI<|Ta— k|
The o € T such that o < 7 = [1,n],X* have a form o = [m + 1, n]e4s, X?2752, in which case
7/o = [1,m]; X** with s = s1 + s2 and v = vy + ve. For such o0 € T Lemmagives

S (/oMo fo™) () = Lo g (1L m]S ).
e1200¢; <+ =T
Also, we have by induction that
Z Z Ah,\(ﬂa,“‘,‘P<([U/V1]Mk,.-~’[Ve2}Mk> — 1v2+52:0 g£7x+h([[m+1,n]]§+vl).
CQZOVe2'<""<O'

If s # 0, then either s; # 0 or s3 + pa # 0, and all the terms of (5.17) add up to 0. Suppose
now that s = 0. The o € T we have to consider are of the form o = [m + 1,n]¢4, for which
7/0 = [1,m]} and the right hand side of (5.17)) writes as

Rya([Lnlf) =gl ([Lnlf) = >0 el ([Lnly™) R
Ipl<I [T

= > el ([Lmly ™) el . (I + 1nlE,, X7),

m,p,v
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where the sum over m, p, v runs over 1 < m < n and multi-indices p, v such that |[1, mﬂzﬂ” >
0 and ‘[[m+1,n]]g+v|a7‘k‘
in the regularity structure .7,. It follows that we finally have

Rpo(ILnlf) =gl (ILnls) = > &l .(0)el(r/o) =gl . (I1,n]F),

o<[1, "]]e

a—|k|
> 0. This sum corresponds to a sum over o € T+ such that o < [1,n]}§

which concludes the proof of (5.16]), and closes the induction step in the proof of point (c),,.

6 — Back to paracontrolled systems

This section is dedicated to proving Theorem[2] We set ourselves in the setting of Section
with its finite alphabet £ = (ly,...,l|z|) and its associated set W of finite words w = 1;, ...[;

Tw*
An a priori notion of size | - |, is given on £, extended to W setting |l;, ... L, |z = |liy|c + -+
i, |-

6.1 — The regularity structure 9. The following construction is identical to the construc-
tion of Section [d] We define a set of symbols

B:= {[w]exp; w=1...li, eW, pleN® £c Pj_l(@} U{XF} oo
and
Bt = {[w]gf; w=1i ...l €W, kL e N® £ P;_1(0), k€ Pi(k), |w]e — |k + €] > o}
U {Xei

We let T be the vector space freely generated by B, and Ty be the algebra freely generated by
BT, with unit 1. We also set

}1§i§d0'

|[w]eXP|, = [wle + €] + |p]
and define |- |z on TF as a multiplicative function such that | X
|[wlg |, = lwle + €] — |kl.

Proceeding as in Section 4} for 7 =[l;, ---1; ]¢e € T we set

= 1and

@(T) = {[Zh "'lij]g<j S B+; 1 S ,7 S n, zj = Oap € Pj(p)vp S Ndo} U {1+}a
and for p = [l;, -++1;,]% € TT we set

EB(:U‘) = {[Z'Ll o llj]leJp € BJr; 1< ] <n, gj = 0,]) € Pj(p)ap € Ndo} U {1+}'
Set for 7 = [l;, -+~ l;,le € T and o = [l;, -- -1, ]} € &(7) with j <n

o= 5 (2l e X

p=p1+p2

and for j = n set (7\o) = iXp. For = [l;; -+ 1;,]% and v = [I;, ~-~li_7.]f+p € @®(pn) with

ji<n
p
TR S £ [ SRS
P=p1+p2 !
and for j = n set (u\v) := %Xp. Finally set

AR = 3 (Fo)eo,
oced(T)
and



36

At =Y (e
veED (1)
[(e\v)] >0

Proceeding as in Section [f] shows that
95 = ((T? A)7 (T+a A+))

is a concrete regularity structure. Given a = (a1,...,q)z|) with Z']‘jl a; >0, and [I] € C¢
for all 1 < j < n, we define from Theorem [I] a model on 7 setting
(L, .- Ui Je) = Pe([lir], - 1))

=(|l; seeey lin —|k 1 n
g([lil lzn]lz) = Pil 1|L | l2)—] |<ak [lil]’“.’ak [li”]);
and M([l;, ... L, ]eXP)() = PN([l;y - .- 1;, ]e)(+), with the notation (1.5).

6.2 — Paracontrolled systems and modelled distributions. We prove Theoremin the

refined form of Theorem Let 7 > 0 and (uyw)weu., be a system r-paracontrolled by the [I],
as in (L.10). For each 7 = [w],XP? € B, with w =, ...1;, and £ € P;,_1({) with [,p € N
such that |7|z < r, set

Uy 1= Z Z (:) '|5(77|ww'\,|li2|,...,|l-;n|)*|k|(aklfjfs’ akz[liQ]a"'aakn[lin}>a

w'=liy-li, €W kEPy(L+p)
ww' EWs

From Theorem [1} each u, defines a bounded function as r — |7|z > 0. Define the T-valued

function
u(x) = Z ur(x) 1.
TEB

26 — Theorem. One has uw € D"(T,g).

Proof — We use Theorem [I] to prove that statement, but in a regularity structure that takes
into account the uf on the same footing as the [I]. We introduce for that purpose a new
alphabet
A:=LuWwW

and set [A|4 = |a|a for A € £ and |A|4 :=r — |A4 for A\ € W. We write W4 for the set
of words written with the alphabet A. To avoid any confusion when writing words with the
alphabet A we will write (w) the letter of A associated with w € W. We extend our collection
([(Niec into ([\])aea setting [w] := uf, € C~1*! for A = w € W. As above, Theoremprovides
a regularity structure associated with A and a model M = (1, g) on it associated with ([A])xe.a-
There is a canonical injection ¢ : .7, < J4 that commutes with the coproducts, and M is an
extension M. We can thus freely pass from g to g in some computations below.

Within 74, working with M, for 7 = [w]¢X? one can rewrite

Ur(w) = Y B([(ww)u' 7).

w' W
For w € W we let

pw) = [(w)w]
where (w)w € A is the word beginning with the letter (w) € A followed by w € A — for
w =1, -+ -1;, it represents the function P(uf,, [l;,],...,[l;,]). Then w can be re-written in 74

under the form
u(@)= Y > B.lp(w)/o)o,
weU<r o< p(w)
Note that any o < p(w) has form [w']¢X? where w’ is a subword of w. We now prove that
u € D"(T,g) by proving that for any w € Uc, the map hy(2) = 3-, () 8(p(s)/0) 0 is an
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element of DIPWI(T4,g). For any =,y € R% and for 7 = [w]eXP, one has

Eolhu(@) = Y Ealpw)/0) grulo/v)v = (g,(0(w)/v) ~ Bulp(w)/v)) v

v<o<p(w) v<T
v<T
Theoremensures that |§W(p(w)/u)’ <y — 2|lP/V with |p(w)/v| =1 — |[v|4. >

Paracontrolled systems in the generality of Section [I.3] were first introduced in Bailleul &
Mouzard’s work [6].

A — Appendix

A.1 — Basics in regularity structures. We recall here some basic facts about regularity

structure. We refer the reader to [3] for a thorough introduction to the subject, and to [8] for
the original work of M. Hairer on the subject.

27 — Definition. A concrete regularity structure is a pair 7 = (T, TT) of graded vector

spaces
T=gr., 1= 1)

reA s€At
such that the following holds.

— The spaces T, and T are finite dimensional for any r € A and s € A*. One has
AT C [0,+00) and both A and A" are bounded from below and have no accumulation
points.

— The vector space TT is a connected graded bialgebra with coproduct At and grading
At C [0, +ool.
— The vector space is endowed with a linear splitting map A : T — T @ T such that
(A®Id)A = (Id® AT)A.
— We have
AT, c P T, 0T AT ¢ P T eT]

T1I—T2)? 8§1—82°
ro€A sa€AT

We suppose here that the vector spaces T' and T+ come with some bases B and Bt. Then
for any 7 € T we have a decomposition

AT = Z(T/O’) ®o
ceB
for some elements 7/0 € T. Likewise we define 7/0 € T for 7 € TT and o € B" from the
identity
Atr = Z (/o) ® 0.
oceBt

For 0,7 € B we write 0 < 7 if 7/0 # 0 and 0 < 7 if o and 7 are distinct and ¢ < 7. For
T,0,v € B we have
At(r/o)= Y 1/vav/e
o<v<Tt
We denote by G the set of real-valued characters of the algebra 7. We endow G+ with a
group structure by defining the convolution product of g; and go as

(g1 % 82)(7) = (81 ® g2) AT T,
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for all 7 € T. We write g~! for the inverse of a character g € G in this group structure. For
any map x € R g: € G we define for any z,y € R% the character

Bys =8y * &y -

Similarly we define for any map N : T" — D'(Rdo)7 any point z € R®, a new map M, : T —
D'(R™) by setting
M, = (Neg ')A.

For any function ¢, point = € R% and e > 0 we set
_ -
() =l p(2).

Finally for any integer ng also define Z,,, as the set of C™° functions ¢ supported in the unit
ball of R% and such that [[¢|ne < 1.

28 — Definition. Pickn > |5y|. A model M = (,g) over a regularity structure T is a pair
of maps

n:7— Cc%R™), g:R® GF
with the following properties.

— For any x € R and 7 € Ti7| we have

Ma(7)(5)] < ™!

uniformly in x in compact subsets of Rdo, ine € (0,1) and in ¢ € Z,,.
— For any x,y € RY and ue TIZI we have

lgye (1) < Jy — ™

uniformly for x,y in compact subsets of R%.

Definition — Let T be a regularity structure and M = (N, g) be a model on it. For anyr € R,
a modelled distributions f € D"(T,g) is a map f : R — ) T, such that

r'<r

max sup | f(z)|,. <+oo,

T'<r LeRdo

p— = x ,
max sup H'f(y) gymg{f, Dl < +o0.
r'<r z,yE€R%0 |y - JZ|

A.2 — Basics on analysis and proofs of three lemmas. For any function f and any

multi-index ¢ € N% we define the modified Littlewood-Paley projector

(Aif) (@)= | Ki(z—y)(y—2)"'fly)dy.

R0
29 — Lemma. For f € C" withr > 0 one has (Aff)
(A F) i1

Proof — If |i — j| > 2 we have AY(A,f) = Aj(ALf) =0, so AFf is spectrally supported in a
ball 2B and

AiN@) = Y Al NE)= Y /Ki(w—y)(x—y)e(ﬁjf)(y)dy

l7—il<1 li—il<1

i>_1 € e and

crrer S -




39

Then we get

<] [ K] 3 1Al <2
|] i|<1

[ E@sas] 171, < 2o g

using the scaling property of the kernel K; for the last inequality. >

Note that the sequence (Af f)i>—1 does not represent the Littlewood-Paley blocks of any
distribution as ), Aff =0 for any £ # 0.

Proof of Lemma@. Pick f = (fi)i>—1 € C" and o > 0 with integer part |o]. If f; is spectrally
supported in a ball 2! B, then f;(- +h) — Z\kl<o 8kfi%}; is spectrally supported in the same ball
2!B. From Taylor Young inequality applied to f; at order |o| + 1 and Bernstein inequality we
have for any = € R%

-y 9 filx)

|k|<o

< |p|lel+ HDL"J“f H
S [p|tel el 0
Similarly Taylor-Young inequality at order |o] gives

fil+h— % a’w)

|kl <|o]

S 2 fill e

from which we see that

an - 3 o n | <

k!
|k|<o

<|parn - 3 0w ]

|kl <Lo]

S IR fi) e+ R

k
Z 3kfi($)}]i!’

|k|=Lo]
[l s\ S el £

We conclude by interpolation that we have

fiw+n) = > & fi(x)

|k|<o

S 12 | fill g S 1RI727°C7) 6],

Proof of Lemma Let 6 > 0 such that the estimate holds for § € [y — d,v + §]. For
z,y € R% with |y — 2| < 1, one has for any integer N

DXy SCYly—alt2i g 02Ny —

i<N i<N
o Xp, <CY |y—aTm2m S o2 Ny — a7,
i>N i>N

Choosing N such that |y — x| =~ 27V gives the required bound.
Proof of Lemma [25]. Using the definition of A, P~ we have
S (PO (@ o ) ()

Te= =T (£)
=33 RO (@ e o™ M) @+ )

€20 <=7y (£)

- Y > (@™ e M) () b

e>0 |k|<r’
Te==Tn(£)



40

SD R DI N GO VA LN Ly

e>0 1<m<e
== (£) [k|<|Tn (€)/0m]

h¥ - w
Xg(Ah,lam\a+agp<)([Um/amfﬂM soees [ )7
where we use the shorthand
8fP< ([Tn(ﬂ)/aﬂMw,...,[Jm,l/am}Mw)
k =D*|mh(£)/o<m|a 1 7" n
> (k) PO/ o] (ak (7€) /oM, .. 0 (o1 o] )

keP,, (k)
The first line of the right hand side gives Py (fl, ce Arfn) (x+h). As
K ;(h)h?dh =0

Rdo
for p # 0, the second line of the right hand side gives a zero contribution when integrated
against K .; except for p = 0, in which case it gives Py (fl, cee Arfn)(x). Then

/ (B PO ([0 /o™ [ M) ()

Oe=--<=Tpn (£)

= [ KW el Afy) 1) dh = Pe(frren . 5 ) 1)

-y 3 afp<([7n(z)/al]M"",...,[a—]M"’)(m)

o=7n(£) |k|<|Tn (1) /o] e1>0
0=0eq < =<Tn (£)

hk e e
<[ Kam =S Y Ah,|f,|+%P<([o—/ul] ) )dh.

d k!
R0 €220 Vey <+ =0

The o € B such that o < 7,(€) have form o = [m+1,n — 1]¢4,, XP>152 and 7/0 = [1, m]F X5
where p = s1 + p2 and [,,_1 = s1 + s2. For such o, using Lemma the sum

> P ([r®/n o /o) @)
o= =7n(£)
is 0 if s1 # 0, otherwise (s; = 0) this sum is equal to

D\ sD*+Pq 1 1 m m —
> (p) PR (@R fy, L 0Fn e ) (o) = g ([Lm]E*7).
PEPm(p)

On the other hand for o = [m + 1,n]g4p, XP2Hn=1 we have from the induction hypothesis

k
K<1(h)% Z Z (Ah,|o—|+a’np<)([O’/VI]MN,“-a[H}Mr,) dh

d :
R0 €220 Vey <=0

= Koi(h) N5 (Im + 1, n]espX ") (2 + h).
R0

One finally gets
=|7Tn ot ., r T T
Lo X (an P ) (/™ o ) o)

d,
O o= =T (L)
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= | K {Pe(fis s Anfa) @+ h) = Pe(fir. o A ) (2)

R0
=3 g/ (L mIE )N (X m + 1n]esy) (2 + h) dh}

m,k,p

= [ Ka®) {0 ([nle)@+h) = > g (I nle/o) (o) + h)  dh

R0 o<[Lnle
:/ K<i(h) L' ([1,n]e) (z + h) dh,
Rdo
so we have indeed (5.14)).

A.3 — Proof of some algebraic lemmas. We prove in this section a number of algebraic
results that were used in the main body of the text. We start Section [A.3.1] by proving the
inductive relation (Lemma on the ﬁgl’ﬁ * that lead us in Section to the local expansion
property satisfied by the Iscé stated in Proposition The operators ﬁilﬂ * have an analogue
ﬁf 8 defined from the (true) iterated paraproduct operator. The remainder of Section

is dedicated to proving Lemma which is the analogue of Lemma for the operators IS? A
Lemma [31] plays a crucial role in our proof of Lemma The later is the main ingredient of
our proof of Theorem [T} The proof of Lemma [24] occupies all of Section [A.3.2]

A.3.1 — Algebraic properties of the 5@1’[32. We start with the

Proof of Lemma[13 The proof is very similar to the proof of Lemma [8| From Assumption
(A) we have the following partition of MultiCut(5?, 5?)

MultiCut(ﬁl, ﬁg) = MultiCut(ﬁl) U |_| MultiCut(3?) [61,m],
meCut(B2)\Cut(s1)
where

. 2\ [ o1 1 2 :
MultiCut (3 )[6 ,m} { € Multhut(ﬁ ;m € i, ZB et Jnélcrtt(ﬁl)zﬁ }
We thus have

~ nl 2 1
P27 (hy,...h,) = P2 (hi,...,hy,)
n(d)

+ 3 > +1HP< iert1se D)

meCut(B2)\Cut(BL) ieMultiCut(52)[81, ]
so it suffices to show that for any m € Cut(3?)\Cut(3') we have

n(d)
> (=)™ TT Pe(hipig1s-- -5 hiy)
i€MultiCut(52)[B,m] k=1

BT S by )P ().
Pick m € Cut(3?)\Cut(B'). We prove that: For 1 < j < m we have
{ai € MultiCut(82)[8,m]; j € i} o {j € Cut(BL,) U cut(ﬂgm)},
and for m < j < n we have
{ai € MultiCut(82)[8",m]; j € i} P {j —me Cut(pL,,) U cut(ﬂim}.

The proof of Lemma [13] follows from these equivalences as in the proof of Lemma
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As a preliminary remark we note that for m € Cut(?)\Cut(8') we have >.", 31 > 0 and
Z::mﬂ B > 0. We prove now the first equivalence relation. Suppose i € MultiCut(3?)[3t, m]
and 1 < j < m is such that j € 4. If j € Cut(8') then j € Cut(BL,,). Otherwise j €
Cut(8?)\Cut(8") and j € Cut(B2,,). Reciprocally if j € Cut(BL,,) U Cut(52,,) then necessarily

Y1 B2 <0and je Cut(f) and Y0 ;B2 < Y0, ., 65
The second equivalence relation is proved in the same way. >

The remainder of this section is dedicated to stating and proving an analogue of Lemma

3| for some operator Pﬁ P2 that we can associate to the iterated paraproduct operators Pg
We first need an ad hoc setting to introduce these operators. It is very close to the setting of
Section @

Fix n > 1. Define the set of symbols

B:= {[[a,b]]’gX’n; 1<a<b<n, LLEEN® £ Py o(l),k € Ppar1(k),me Ndo}
U {Xm}meNdo-

Given 8 € R" and 7 = [a,b]} € B we set
b
ITls = B; — Ikl + .
j=a

We denote by T the vector space freely spanned by the elements of é, and for 7 = [a, b]% we
set
o(r) = {la. i sa <o <b fea =0},

Lee

for o = [a, c]]eﬂ’ € @(7) define an element of 7' setting

(T\o):= > (;)[[C+1vb]]z>hj+p1Xp2

k=p1+p2
Finally we define a coproduct AT—TeT setting
3(7‘) = Z (T\o) ® 0.
ce€®(T)

Proceeding as in the proof of Proposition [I7] one can see that A is co-associative. We note
in particular that all the elements of T in the sum defining (7\o) have the same homogeneity.
Re-indexing the sum defining A(7) we can write

=: Z veT/V,
VZT
with v running in the basis B of T and 7/v defined by this identity. The element 7/v of T is
a sum of terms with the same | - |g-homogeneity, so we can abuse notations and write |7/v|s.
For T € B we define the set of cuts
Cut(r, B) = {027'; lojg <0 and |7/o|g > O},
and the set of multicuts
Mu/ltEut(T7 B) = {o’ = (01, ,0¢(c)) € EE(T)E(U) se(o) > 1, 06(0)2 e 20127'}.

For a fixed tuple g = (g1, ..., g,) of distributions, for o = [a,b]§ € B we set
Ty(o) := Py (8k“ga, ce 8k”gb).
We note that for any p € (Ndo)”, setting OPg = (0P gy, ...,0P"¢g,,), one has
Yorg ([a,0]5) = T ([a,b]; 7). (A.1)
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30 — Lemma. For any { € N™ and £ € P, _,((), letting 7 = [1,n]9, we have

ﬁf(gh 7gn) = Pl(glu"' 7gn) - Z (_l)e(o')+1 Tg(T/Ul)Tg(Jl/J2)"'Tg(ae(a))~
O'EMﬁt_Eut(‘r,ﬁ)

(A.2)
Proof — We prove (A.2) by induction on n. The result is true for n = 1. We prove that the
right hand side of (A.2)) satisfies the same recursive relation as P? (gl, ey gn). The proof is

analogous to the proof of Lemma [
From Assumption (A) we have a partition

MultiCut(r, 8) = | | MultiCut(r, 8)[v],

o<t
where
l\/lﬁciut(T7 B[] = {a’ = (01, ,0¢(c)) € Mu/ltfut(r, Bsveo,|t/v= 1<I_IED( : T/O’jl}.
sSyselo

For any v € fL?c(T, B) and u<v we have the equivalence
{EIO' € Mﬁut(r,ﬁ)[u] TS o‘} =3 {u € EE(V, B)}
Likewise, for v<u<7 we have
{aa € MultiCut(r, B)[v]; u € 0'} = {p/y € G(T/y,ﬂ)}.

Define
To(rB) = > (D)L (r/01) Tg(01/02) - Tg(oe(e)-
o‘EMu/ItEut(T,B)
Using the two equivalence relations above, the same computation as in the proof of Lemma [§]
gives that

Tg(Taﬁ) = - Z (TH(U) —TQ(O', 6)) (TQ(T/U) _Tg<7—/076))-
o'EC/ﬂt(‘r,ﬂ)
From the induction hypothesis, for o = ¢+ 1,n]e4p € GE(T, B) we have
Tg(O') - T5](0'7 ﬂ) = ﬁfi;n(gm+l7 B agn)
Likewise, for /0 = [1, c]}, using (A.I) we have

Yolr/o) = Tor/am = 3 (2){tollndf) - To(112.5))

pG'Pm(p)
p —
- ¥ ( ){Tapg([u,c]]g) ~Torg (I1, 2.8 Ipl) }
p
PEPm(P)
_ Z (p) ﬁfﬁcflpl(aplgl’."7ap7ngm).
PE'PM(;D) p
This closes the induction step. >
Define
MultiCut(r, 5%, 82)
= {0' = (01, 1 Oc(e)) € (aﬁ(r,ﬁl) U EE(T, ,82))6(0) se(o) > 1, 06(0)2 e 20127},
and set
~nl p2
Pf o (917---agn):: Pe(gla'“vgn) - Z (_1)e(a)+1Tg(T/Ul)T9(01/02)"'Tg(ae(a))'

o cMultiCut(r,1,82)
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31 — Lemma. Suppose (31,2 are two tuples of real numbers such that 3L > B2 for every
1 <s<n. Then we have

~ 1 32 ~ 1 ~81_|k|,82—|k . ~3g1 2
Pf’ﬁ (glvvgn):Pf (gl»»gn)_zpf V6%~ I(aklglw"aak gC) P5+£ (gc+17'~‘7gn)a
for a sum over [c+ 1,n]} € GE(T, ﬁQ)\ElE(T,ﬂl),

Proof — The proof is the same as the proof of Lemma Using Assumption (A) we can
partition of MultiCut(r, 3%, 3?) as

MultiCut (7, 8%, 82) = MultiCut(, 8*) U | | MultiCut(r, ) [8", ],

veCut(r,82)\Cut(r,8)

where
Mﬁti\Cut(T, g[8 v] == {0' € Mﬁti\Cut(T,Bl,ﬁz) sveo, |T/v|g, = min |T/0'52}.
oc€o,o¢Cut(r,B1)

Then we have
~nnl 2 ~ nl
Pf s (917"' 7gn) :Pf (917"' >gn)

+ Z (_1>€(a)+1 T9(7'/‘71)Tg<‘71/02>"'Tg(atz(tf)>'
veCut(r,82)\Cut(r,8")
GGMﬁti\Cut(T,BQ)[BlaV]

It suffices then to show for any v = [1,c]§ € Gﬁ(ﬁ 52)\6E(T, B') we have

) (~) @Y (r/o1) - Tg(0e(er)
o’EI\/Iﬁcht(‘r”@Q)[ﬁ1 V)

~Dk}61 ’77L7Dk}ﬂ2 m NﬁlmﬂlBQm
:_stmg = (ak1f17"' 7akmfm)P£_‘>_k i (fm+1u"' 7fn)
For such a v, we show below that for u<v we have
{30’ € l\/lﬁcﬁut(T7 BB V], ne a} & {u € al\t(u,ﬁl) U GJ\t(u, 52)}, (A.3)

and that for v<u<r we have
{Ela € l\/lu/ltﬁut(r, BB v], ne 0'} & {T/u € G(T/V,ﬁl) U EE(T/Z/, 62)}. (A4)

We can then conclude the proof of our lemma in the same way as in the proof of Lemma [§]

A basic observation we will use is that for v = [1, ]} € Cut(r, 5%)\Cut(r, 8') we necessarily have
[v|gr > 0 and |7/v|g > 0. We now prove (A.3). Suppose o € MultiCut(r, 82)[8", ] and p<v
suchthat p € o. If u € Eu\t(T,ﬁl), then u € Eu\t(u,ﬁl) and otherwise p € al\t(T, 52)\@(7,51),
then pu € aﬁ(u,62). Reciprocally if p € aﬁ(u,ﬂl,ﬁQ), then necessarily |v/pu|g2 < 0 and
p € Cut(r, 8%) and |7/l g> < |7/v|s2. We proceed similarly to prove the equivalence A4). >

A.3.2 — Proof of Lemma We first prove point (i) by induction. From the definition
of the operator P. we have

ﬁ‘;’/a‘a—\k\ ([7’/01]8’“1: L [Ue]akf> —P_ ([T/aﬂakf» e [ae]akf>

_ Z ﬁZ/USc\a—\k\ ([T/O’l]akf, o [O'c—l/gc}akf)

ploc/O>cla— k k
x P (o foe )T [0,

with a sum over the set of integers ¢ € [1,e] such that |7/o¢|q—jk > 0 and [o¢|q—jk < O.
Summing over the set of descending sequences g, < -+ < 01 < 7 = [1,n]¢X™, we obtain that
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Z Z ’|5\<‘f/0\a7\k\ ([T/Uﬂakf,,,,,[ae]akf>

e>0 0= <01<T
is equal to

S X Pl )

e>0 oe<--<o1<T

3 > PRI ([rfo]?fe fo) T )

_o=T e12>0
oeCut(r,a—|k|) 0<oe, <=7

x> > P (o) )

€2>0Vey <=0

From Lemmathe first sum in (A.5)) is equal to Py (8k1f1, oo, OFn fn) if m = 0 and 0 otherwise.

For the second double sum in the right hand side of (A.5]), note first that all the homogeneities
in the tuple |7/0|o—|x| are positive. It follows that we have

’lg\g/a\afwk\ ([T/O’l]akf, o [Uc_l/g]akf) =P, ([T/ol]akf, e [ac_l/a}akf)

Now, the elements o < 7 have the form o = [c+ 1,n]e. .45, XP**™, and 7/0 = [1,c[j_ X™>
with m = mq + mg and p = p1 + p2, so it follows from Lemma [22] that

Z Z P. ([T/Ul}akf,-.-,[Cfm_l/a]akf)

€1200<0¢) < <T

pa<c—lk +pe
e X (D) g
PEP:(p)
Also, the induction hypothesis gives
Blo a— e k pa—lk|>c . n
Yy Pl ([0/1/1]6 P ve,]? f) = Lpyimi—o Py Me (9Pt fopr, 04 1),

ex>0 Vey <" =0

If m # 0 then my # 0 or m2 + p1 # 0, and then all the terms in the right hand side of [A5] add
up to 0; this closes the induction in that case. If now m = 0, the non-zero terms in the sum
over o < T are the terms with o = [c+ 1,n]¢4p, and 7/0 = [1, ¢}, and

S P (o 07 ) = Pe(0M fu, . 0 f)

e>0 0e=<--<01<T

_ Z Z ﬁo‘éc*““ﬂ’\ (akﬁ-pl Fiven 7akc+pcfc) F)Zé;c;l\)m (akc+1 Fottsenns 3kn,fn)7

Lo
¢:p pEP(p)

where the sum in the right hand side runs over the paris (¢, p) such that ¢, = 0, |[1, c]]?@ la—k| >
0 and [[c + 1, n]e. .4 pla—ik| < 0. It follows then from recursive definition of the correctors ﬁf
that the above quantity is indeed equal to ﬁ?_lkl (8k1f1, oo, OFn fn).

— We now prove point (ii) by proving the following stronger statement: For 7 = [1,n],X™ €
T, and for any p € N”lo7 one has

Z Z afP< ([T/Jl]fv'”v[o—e/a}f)
e>0 0<0e=<<T
=10 Z Z (i) (Z) ﬁg*\klvaflkﬂ\ (3k1+p1 fire ,akn+pnfn>7

PEPL(p) kEP, (k)
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where

OP - ([T/al}f, o [Ue/o']f) = ¥ <p) plr/ole-lpl (am [r/on)?,... 8P [Ue/a]f).
b
PEPe+1(p)
The proof of this fact relies on Lemma[31]and is an induction over n. The result is true for n = 1;
suppose it holds true for (n—1). From the definition of 9¥P . and the recursive relation of Lemma
for any descending sequence o < o, < -+ < 7, the distribution 8P ([r/01]7, -, [0c/0]7)

is equal to
Z (i)ﬁg/al|p|(apl[7—/o-1]f7._l,613‘1[0'6/0'].f)

PEPe(p)
= > (ﬁ){P<(5P1[T/U1]f,...,ape[o—e/g]f) ()

PEPe(p)

_ Z ISZ/USC‘_“DSC'<8p1[7/01]f,...,3pc[ac_1/ac]f>

ceCut(|7/o|—|p|)

e (N e/g]f)}.

Then, summing over descending sequences o < g, < --- < 7 and inverting the sums over p and
¢, we obtain

> X ar (ol ool ) = (> Y Pe(lr/e /o)) |

e>0 0=<0e=< =T e>00<0e<<T

Y Y (Z){ D (Z>|S<T/V|a(8a1[7_/y1]f7...76%1[1/61/”]3‘)

v<T p=a+b e1>0 acP, (a
(a,b)eC(T,v,0) VU=Vey R =T

< > Y <Z> P (/o] 6o o)) }

e2>0 beEPe, (b)
0=0eqy ==V

where

C(r,o,v) == {(a,b) e (N®)2 |7/v| > |a| and |v/o| < |b\}
From Lemma [22] the first line of the right hand side of the last equality is equal 0 if m # 0, as
S>> 1 A(g) = 0 for any function g; it is equal to 9Pg¥ () if m = 0.

We are able to use induction hypothesis for the remaining terms. Suppose first that m # 0.
For any v < 7 the elements 7/v,v/c € T* have the form 7/v = [[1,0]]511Xm1 and v/o =
[e+1, n]]IZiUX ™2 where mq, mg cannot be both equal to 0. The induction assumption ensures
in that case that the second term on the right hand side is 0, which closes the induction step.

Suppose now that m = 0. In this case for v < 7, the elements 7/v,v/0c € T have form
/v =[1,d5 T and v/o = [c + 1 ”ﬂuv XV with k = k, + ky and v = v1 + vo. For vy # 0
the induction assumption ensures that the sum over ey is null. We are thus left with the v for
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which vg = 0. This leads to the equality

S 3 (e lool?)

e>0 0<0e < <T

> (2) {apﬁj"“(aklfl,...,aknfn)

kePy (k)
Z ( ) Z Z ( )( )P2¥|k|<c’a<mk+q+v<ak1+q1+v1f1 6kc+qc+vcfc)
o R
p=q+q’ q g€P:(q) vEP:(v)
c,v
X Z ((;l/) ﬁ?;|f|1)>c,a>c*\k+q| (akc+1+qc+1 fc+1’ o 8k”+q” fn) }7
q’EPn_c(q’)

where the sum over ¢, q in Ndo subject to ¢ + ¢’ = p, and ¢, v runs over the indices such that

I, ]]k<”+v fe+1, n]]fj; € T" and (. = 0 and
k<c+tv / ks
gl < |1,y | ., and \q|>’[[c+1,n]]e+va a

a—q
This gives then

DY ( )( ){ﬁg""' (0" 47 pr, oMt g, )

pET n( )ICEJE n(k)
E Do |k|< 1 &<e “L’ pl k “+p1+ ket+petve
P<C Serrse 81 1 U1f7.'.,8 e TPe 'U<fc

c,v

vEP(v)

pa—lk|sc,asc—|k+b] ket1+Dpe kn+pn
x P£>C+v> g QretrTPert g, ..., 0 Prfn) o

where the sum sum over ¢,v runs over indexes such that [c + l,n]]f_fg € a(r,a — |k +
p|)\€u\t (7, — |k|). The result follows in that case from Lemma
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