AN INTERACTIVE FIELD THEORY APPROACH TO THE STOCHASTIC SINE-GORDON MODEL

Rencontre ANR SMOOTH 2024

Joint work with

(a) Claudio Dappiaggi University of Pavia

(b) Paolo Rinaldi University of Bonn

Singular Stochastic PDEs

$$Lu = F(u) + H(u)\xi$$

Rough source ξ : proper meaning to the nonlinear contributions? \Rightarrow need for **renormalization**

Singular Stochastic PDEs

$$Lu = F(u) + H(u)\xi$$

Rough source ξ : proper meaning to the nonlinear contributions? \Rightarrow need for **renormalization**

• Regularity structures

Present frameworks:

- Paracontrolled calculus
- Renormalization group techniques

Pros 🖒	Cons 🐶
Well-posedness results	Few information on the solution
Widely applicable	

Sine-Gordon QFT

- **Geometry:** 2-dim Minkowski (\mathbb{R}^2, η)
- Field theory: $a \in \mathbb{R}$, $g \in \mathcal{D}(\mathbb{R}^2)$

$$(\Box + m^2)\psi + \lambda ga\sin(a\psi) = 0$$
$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\psi\partial^{\mu}\psi - \frac{1}{2}m^2\psi^2 - \lambda g\cos(a\psi)$$

Finite ultraviolet regime: $a^2 < 4\pi/\hbar$

pAQFT framework

2-step approach

- 1. construction of an algebra of observables ${\cal A}$
 - dynamics
 - causality
 - CCR/CAR ...

pAQFT framework

2-step approach

- 1. construction of an algebra of observables ${\cal A}$
 - dynamics
 - causality
 - CCR/CAR ...
- 2. **state**: positive, normalized, linear functional $\omega : \mathcal{A} \to \mathbb{C}$ \to Expectations

 $\label{eq:Quantization} \textbf{Quantization}? \rightarrow \textbf{Deformation of the algebraic structure}$

Functional-based approach

 \mathcal{A} : functionals on the space of field configurations $\mathcal{E}(\mathbb{R}^2)$

$$\Phi_{f}(\varphi) = \int_{\mathbb{R}^{2}} f(t, x)\varphi(t, x) \, dt dx, \qquad \forall f \in \mathcal{D}(\mathbb{R}^{2}), \varphi \in \mathcal{E}(\mathbb{R}^{2})$$
$$\Phi_{f}^{2}(\varphi) = \int_{\mathbb{R}^{2}} f(t, x)\varphi^{2}(t, x) \, dt dx$$

The theory goes **quantum** by switching to deformed products

$$F \star_{\hbar K} G := \mathcal{M} \circ e^{D_{\hbar K}} (F \otimes G)$$
$$D_{\hbar K} := \left\langle \hbar K, \frac{\delta}{\delta \varphi} \otimes \frac{\delta}{\delta \varphi} \right\rangle = \int_{\mathbb{R}^2} dx dy \, \hbar K(x, y) \frac{\delta}{\delta \varphi(x)} \otimes \frac{\delta}{\delta \varphi(y)}$$

Functional-based approach

Examples:

- $\Delta = \Delta_R \Delta_A$ causal propagator $\rightarrow \text{CCR}$
- $\omega = \frac{i}{2}\Delta + H$ Hadamard parametrix \rightarrow Wick-ordered observables
- Δ_F Feynman propagator \rightarrow time ordering

Functional-based approach

Examples:

- $\Delta = \Delta_R \Delta_A$ causal propagator $\rightarrow \text{CCR}$
- $\omega = \frac{i}{2}\Delta + H$ Hadamard parametrix \rightarrow Wick-ordered observables
- Δ_F Feynman propagator \rightarrow time ordering

Issues:

- 1. Singular structure of the kernel = clash with the one of functional derivatives of the observables
- 2. $e^{D_{\hbar K}}$ yields a formal power series in \hbar

Interacting theory

• S-matrix

$$\begin{split} S(\lambda V) &:= \exp_{\star_{\hbar\Delta_F}} \left(\frac{i}{\hbar} \lambda V \right) := \sum_{n \ge 0} \frac{1}{n!} \left(\frac{i}{\hbar} \lambda \right) \underbrace{V \star_{\hbar\Delta_F} \dots \star_{\hbar\Delta_F} V}_{n} \\ V_g &:= \frac{V_{a,g} + V_{-a,g}}{2}, \qquad V_{a,f}(\varphi) := \int_{\mathbb{R}^2} dx f(x) e^{ia\varphi(x)} \end{split}$$

Interacting theory

• S-matrix

$$\begin{split} S(\lambda V) &:= \exp_{\star_{\hbar\Delta_F}} \left(\frac{i}{\hbar} \lambda V\right) := \sum_{n \ge 0} \frac{1}{n!} \left(\frac{i}{\hbar} \lambda\right) \underbrace{V \star_{\hbar\Delta_F} \dots \star_{\hbar\Delta_F} V}_{n} \\ V_g &:= \frac{V_{a,g} + V_{-a,g}}{2}, \qquad V_{a,f}(\varphi) := \int_{\mathbb{R}^2} dx f(x) e^{ia\varphi(x)} \end{split}$$

• Bogoliubov map: interacting version of $F \in \mathcal{F}((\mathbb{R}^2)^{\otimes m})$

$$R_{\lambda V}(F) = \sum_{n \ge 0} \frac{\lambda^n}{n!} R_{n,m}(V^{\otimes n}, F),$$

where $R_{n,m}(V^{\otimes n},F)$ involves Δ_F and Δ_{AF}

Algebraic/microlocal approach to SPDEs

Idea: singular SPDEs as nonlinear QFTs

state $\omega \quad \longleftrightarrow$ Covariance of the random field

Algebraic/microlocal approach to SPDEs

Idea: singular SPDEs as nonlinear QFTs

state $\omega \quad \longleftrightarrow$ Covariance of the random field

$$\Delta u = \lambda u^3 + \xi$$

 ξ spacetime white noise: a Gaussian **random distribution** with

$$\mathbb{E}[\xi(f)] = 0, \qquad \mathbb{E}[\xi(f)\xi(h)] = \langle f, h \rangle_{L^2}, \qquad f, h \in \mathcal{D}(\mathbb{T}^d)$$

 \longrightarrow perturbation of the linear equation

$$\Delta u_0 = \xi$$

Algebraic/microlocal approach to SPDEs

 $G \in \mathcal{D}'(\mathbb{T}^d \times \mathbb{T}^d)$ fundamental solution

$$u_0 = G * \xi$$
$$\mathbb{E}[u_0(f)u_0(g)] = \int_{(\mathbb{T}^d)^2} \left(\int_{\mathbb{T}^d} G(\bar{z}, z) G(\bar{z}, z') \, d\bar{z} \right) f(z)g(z') \, dz dz' = Q(f, g)$$

- • -

Algebraic/microlocal approach to SPDEs

 $G \in \mathcal{D}'(\mathbb{T}^d \times \mathbb{T}^d)$ fundamental solution

$$u_0 = G * \xi$$

$$\mathbb{E}[u_0(f)u_0(g)] = \int_{(\mathbb{T}^d)^2} \left(\int_{\mathbb{T}^d} G(\bar{z}, z) G(\bar{z}, z') \, d\bar{z} \right) f(z)g(z') \, dz dz' = Q(f, g)$$

Perturbative study of the solution

$$u[\![\lambda]\!] = \sum_{n=0}^{\infty} \lambda^n u_n \qquad u_0 = G * \xi = \mathbf{1} \qquad u_1 = G * (G * \xi)^3 = \mathbf{1}$$
$$u_n = \sum_{k_1 + k_2 + k_3 = n-1} G * (u_{k_1} u_{k_2} u_{k_3})$$

Algebra of observables^{1,2} \mathbf{Q}

Inspired by Algebraic Quantum Field Theory

1. Promote the random field $u_0 = G * \xi$ to a functional-valued distribution Φ defined via

$$\Phi_f(\varphi) = \int_{\mathbb{R}^2} dt dx f(t, x) \varphi(t, x), \qquad \forall f \in \mathcal{D}(\mathbb{T}^d), \varphi \in \mathcal{E}(\mathbb{T}^d)$$

2. <u>algebra of observables</u>: polynomial (multi)local functionals + condition on the **wavefront set**

¹C. Dappiaggi, N. Drago, P. Rinaldi, L. Zambotti, CCM (2022).
 ²A. B., C. Dappiaggi, P. Rinaldi, AHP (2023)

Deformation of the algebra structure

Functionals don't know about the stochastic nature of the problem \Rightarrow **deformation** of the tensor product

$$\begin{split} D_Q(F)(f;\varphi) &:= \left\langle Q, \frac{\delta}{\delta\varphi_1} \otimes \frac{\delta}{\delta\varphi_2} F(f;\varphi) \right\rangle \qquad F \in \mathcal{T}(\mathcal{P}_{Loc}) \\ \Gamma_Q(F) &= e^{D_Q}(F) \\ \Gamma_Q(F_1 \otimes F_2) &= \Gamma_Q(F_1) \star_Q \Gamma_Q(F_2) \quad \text{Algebra endomorphism} \end{split}$$

Remark These are formal expressions. One should either regularize *G* or perform a renormalization procedure (Epstein-Glaser)

Expectation values

The deformation map allows to **compute expectation values** of polynomial expressions in the random distribution u_0 :

$$\mathbb{E}[P(u_0)(f)] = \Gamma_Q(P(\Phi))(f;0)$$

Example

$$\Gamma_Q(\Phi^2)(f,0) = Q(f\delta_{Diag_2}) \equiv \mathbb{E}[u_0^2(f)]$$

$$\Gamma_Q(\Phi^2) = \checkmark + 0$$

Renormalization

$Q\sim\,G^2$ ill-defined product of distributions

Theorem

The Fourier transform of a compactly supported smooth function is rapidly decreasing.

Wavefront set: singular points as well as singular directions

 \rightarrow products of distributions, composition...

Scaling degree: local behaviour

 \rightarrow extension over the singular support (renormalization)

Back to stochastic sine-Gordon

Recent results 3 on convergence in the AQFT framework \Rightarrow we adapted them to our setting

$$(\Box + m^2)u + \lambda ga\sin(au) = \chi\xi$$

• Algebra of functionals $(\mathcal{F}^V \subset \mathcal{F}_{\mu c}, \star_{\hbar K}, *) \supset$ exponentials of the field

Standard approach: classical Möller map + action of Γ_Q to get expectation values

³D. Bahns, N. Pinamonti, K. Rejzner, JMAA (2021)

Strategy⁴ 🖽

 \rightarrow Cannot address the question on convergence of the perturbative series defining the expectation values.

We divide our approach in two steps:

- 1. stochastic information within the quantum theory
- 2. recovering expectations via classical limit

$$\Gamma_Q[r_{\lambda V_g}(\varphi)]|_{\varphi=0} = \lim_{\hbar \to 0^+} \Gamma_Q[R_{\lambda V_g}(\varphi)]|_{\varphi=0}$$

⁴A. B., C. Dappiaggi, P. Rinaldi, Arxiv (2023)

Interplay between quantum and stochastic

$$F \in \mathcal{F}_{loc}(\mathbb{R}^2) \to R_{\lambda V_g}(F) = S(\lambda V_g)^{\star_{\hbar\omega} - 1} \star_{\hbar\omega} (S(\lambda V_g) \star_{\hbar\Delta_F} F)$$

$$\Gamma_Q[R_{\lambda V_g}(F)] = \Gamma_Q[S(\lambda V_g)^{\star_{\hbar\omega}-1}] \star_{\hbar\omega+Q} \left[\Gamma_Q[S(\lambda V_g)] \star_{\hbar\Delta_F+Q} \Gamma_Q[F]\right]$$

We introduce the so called Q - S matrix

$$\Gamma_Q[S(\lambda V_g)] = \sum_{n \ge 0} \frac{1}{n!} \left(\frac{i\lambda}{2\hbar}\right)^n \sum_{k=0}^n \binom{n}{k} \mathcal{T}^{\hbar \Delta_F + Q} \left[\Gamma_Q[V_{a,g}]^{\otimes k} \otimes \Gamma_Q[V_{-a,g}]^{\otimes n-k}\right]$$

Interplay between quantum and stochastic 🦨

$$\Gamma_Q(V_{\pm a,g}) = \dots = \int_{\mathbb{R}^2} dx \, g(x) e^{-\frac{a^2}{2}Q(x,x)} e^{\pm ia\varphi(x)} := V_{\pm a,g_Q}$$
$$g_Q(x) := g(x) e^{-\frac{a^2}{2}Q(x,x)} \in \mathcal{D}(\mathbb{R}^2)$$

 $\Rightarrow \Gamma_Q$ simply modifies the localization

Interplay between quantum and stochastic

$$\Gamma_Q(V_{\pm a,g}) = \dots = \int_{\mathbb{R}^2} dx \, g(x) e^{-\frac{a^2}{2}Q(x,x)} e^{\pm ia\varphi(x)} := V_{\pm a,g_Q}$$
$$g_Q(x) := g(x) e^{-\frac{a^2}{2}Q(x,x)} \in \mathcal{D}(\mathbb{R}^2)$$

 $\Rightarrow \Gamma_O$ simply modifies the localization

$$\left| \left[\Gamma_Q[S(\lambda V_g)] \right]_n \right| \le \frac{1}{n!} \left(\frac{\lambda}{\hbar} \right)^n \operatorname{ev}_0[\mathcal{T}_n^{\hbar H + Q}(V_g \otimes \ldots \otimes V_g)], \qquad H = \operatorname{Re}(\Delta_F)$$

H and Q are symmetric \Rightarrow we switch to a commutative algebra Remark

Convergence of the Q-S matrix

• Conditioning and inverse conditioning (Euclidean QFT⁵): controlling the massive theory via the massless one

Remark to obtain positivity, one has to restrict to spacetime diamonds

$$D_{\mu} := \{(t, x) \in \mathbb{R}^2 \mid -\mu < t - x < \mu, \ -\mu < t + x < \mu\} \quad \Rightarrow \quad supp(g) \subseteq D_{\mu}$$

Cauchy determinant: specific form of the propagators in 1 + 1 dimensions

⁵ J. Frölich, CMP (1976)

f

Convergence of the Q-S matrix

Theorem

Setting $\alpha := \frac{a^2\hbar}{4\pi}$ and for $0 < \alpha < 1$, there exist positive constants $\widetilde{C}, C_Q(\mu)$ and K such that

$$\begin{split} \left| [\Gamma_Q[S(\lambda V_g)]]_n \right| &\leq \frac{2(2\mu)^{n\alpha} (C_Q)^{n^2}}{(n!)^{1-1/p}} \left(\frac{2\lambda e^{2^{-1}a^2K}}{\hbar} \right)^n ||g||_{L^q} C^{n/p}, \\ \text{or } p \in [1, \alpha^{-1}), \, \frac{1}{p} + \frac{1}{q} = 1 \,. \end{split}$$

As a corollary, the series $\Gamma_Q[S(\lambda_{V_g})](\varphi) = \sum_{n \ge 0} [\Gamma_Q[S(\lambda V_g)]]_n$ is **absolutely convergent** for all $\varphi \in \mathcal{E}(\mathbb{R}^2)$

Other convergence results

• Stochastic interacting field

$$\Gamma_Q[\Phi_{I,f}] := \Gamma_Q[R_{\lambda V_g}(\Phi_f)]$$

• *n*-point functions

$$\Gamma_Q[R_{\lambda V_g}(\Phi_{f_1}\dots\Phi_{f_n})]$$

In both cases we get absolute convergence of the power series in λ as a generalization of the Q-S matrix case

Classical limit $\hbar \to 0^+$

We must get rid of the quantum side

For $\lim_{\hbar\to 0^+} R_{\lambda V_g}(F)$ to exist, the argument must not contain negative powers of \hbar .

 \Rightarrow combining it with absolute convergence of the series ensures existence of the **non-perturbative momenta** of the solution

Classical limit $\hbar \to 0^+$

Via combinatorial arguments we obtain that:

- all the non-vanishing contributions to $R_{n,m}(V_g^{\otimes n}, F)$ are such that any V_g is connected with one of the entries of F.
- for any $n \ge 0$,

$$R_{n,m}(V_g^{\otimes n},F) = \mathcal{O}(\hbar^0)$$

Non-trivial task:

$$\lim_{\hbar \to 0^+} R_{\lambda V_g}(F) \stackrel{?}{=} r_{\lambda V_g}(F)$$

 \rightarrow $% \left({{\rm{B}}} \right)$ we are studying the actual solution to the stochastic sine-Gordon equation

Stochastic bosonization

Bosonization:

massless sine-Gordon model \longleftrightarrow massive Thirring model

Question: does it survives at the stochastic level?

Convergence results for the SG model + algebraic approach to the stochastic Dirac equation $^{\rm 6}$

- Convergence for Dirac?
- Similar results for SHE \longleftrightarrow KPZ equation

⁶A. B., B. Costeri, C. Dappiaggi, P. Rinaldi, Arxiv (2023)

If you have any questions, I would be glad to (try to) answer them

An interactive field theory approach to the stochastic sine-Gordon model

Algebras of functional-valued distributions

 $\mathcal{D}'(M; Fun)$ space of polynomial functional-valued distributions

$$\tau:\mathcal{D}(M)\times\mathcal{E}(M)\to\mathbb{C}$$

linear in the first component and continuous in the locally convex topology of $\mathcal{D}(M)\times\mathcal{E}(M)$

• Functional derivatives $F^{(k)} \in \mathcal{E}'(\underbrace{M \times \ldots \times M}_{k}; \mathcal{D}'(M; Fun))$

$$F^{(k)}(f \otimes \eta_1 \otimes \ldots \otimes \eta_k; \varphi) := \frac{\partial^k}{\partial s_1 \dots \partial s_k} F(f; \varphi + s_1 \eta_1 + \ldots + s_k \eta_k)$$

Algebras of functional-valued distributions

- Microcausal functionals: condition on the WF
 - \longrightarrow Analogy with the problem of Wick renormalization

$$\mathcal{D}'_{C}(M^{k}; Pol) := \left\{ F \in \mathcal{D}'(M^{k}; Pol) \mid WF(F^{(n)}) \subseteq C_{k+n} \,\forall n \ge 0 \right\}$$

 C_n sort of Cartesian product of diagonals

$$\mathcal{A}_0 := \mathcal{E}\{\mathbf{1}, \Phi\}, \qquad \mathcal{A}_j := \mathcal{E}\{\mathcal{A}_{j-1} \cup G * \mathcal{A}_{j-1}\} \qquad \mathcal{A} := \lim_{\longrightarrow} \mathcal{A}_j$$

Algebraic structure: **pointwise product** $[\tau_1 \tau_2](f; \eta) := \tau_1 \otimes \tau_2(f \delta_{Diag2}; \eta)$

Deformations

Theorem

Let $\Gamma_Q: \mathcal{A} \to \mathcal{D}'_C(M; Pol)$ be the deformation map constructed before. Then $(\mathcal{A}_{\cdot_Q} := \Gamma_Q(\mathcal{A}), \cdot_Q)$ is a unital, commutative and associative algebra w.r.t. the product

$$\tau_1 \cdot_Q \tau_2 := \Gamma_Q [\Gamma_Q^{-1} \tau_1 \Gamma_Q^{-1} \tau_2]$$

Corollary: Γ_Q is an algebra homomorphism

Nonlocal algebra - correlations

$$\mathcal{T}(\mathcal{A}_{\cdot_Q}) := \mathcal{E}(M) \oplus \bigoplus_{n \ge 1} \mathcal{A}_{\cdot_Q}^{\otimes n}, \qquad \mathcal{T}'_C(M; Pol) := \mathbb{C} \oplus \bigoplus_{n \ge 1} \mathcal{D}'_C(M^n, Pol)$$

We look for a map $\Gamma_{\bullet_Q}: \mathcal{T}(\mathcal{A}_{\cdot_Q}) \to \mathcal{T}'_C(M; Pol)$ implementing the covariance of the noise

 \Rightarrow we just remove the pullback on the diagonal from \cdot_Q .

Theorem

Given $\Gamma_{\bullet_Q} : \mathcal{T}(\mathcal{A}_{\cdot_Q}) \to \mathcal{T}'_C(M; Pol), (\mathcal{A}_{\bullet_Q} := \Gamma_{\bullet_Q}(\mathcal{T}(\mathcal{A}_{\cdot_Q})), \cdot_Q)$ is a unital, commutative and associative algebra w.r.t. the product

$$\tau_1 \bullet_Q \tau_2 := \Gamma_{\bullet_Q} [\Gamma_{\bullet_Q}^{-1} \tau_1 \otimes \Gamma_{\bullet_Q}^{-1} \tau_2], \qquad \tau_1, \tau_2 \in \mathcal{A}_{\bullet_Q}$$

Renormalized φ_n^4 equation

Applying Γ_Q to the mild equation we get

$$\Psi_{\cdot_Q} = \Phi - \lambda G * (\Psi_{\cdot_Q} \cdot_Q \Psi_{\cdot_Q} \cdot_Q \Psi_{\cdot_Q})$$

To express it in terms of pointwise products, there is a price to pay

Theorem

There exists a sequence of functional-valued linear operators $\{M_n\}_{n\in\mathbb{N}}$ such that

- $M_n(\varphi): \mathcal{E}(M) \to \mathcal{E}(M)$ for all $\varphi \in \mathcal{E}(M)$, $\forall n \in \mathbb{N}$,
- $M_n(\varphi)$ has an even polynomial dependence on φ ,
- defining $M:=\sum_{n\geq 0}\lambda^n M_n$, Ψ_{\cdot_Q} solves the equation

$$\Psi_{\cdot_Q} = \Phi - \lambda G * \Psi^3_{\cdot_Q} - G * M \Psi_{\cdot_Q}$$