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Hurdles and Ideas Stochastic sine-Gordon Future perspectives

Singular Stochastic PDEs

Lu = F(u) + H (u)ξ
Rough source ξ: proper meaning to the nonlinear contributions?

⇒ need for renormalization

Present frameworks:

• Regularity structures
• Paracontrolled calculus
• Renormalization group techniques

Pros � Cons �

Well-posedness results Few information on the solution
Widely applicable
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Sine-Gordon QFT

• Geometry: 2-dim Minkowski (R2, η)

• Field theory: a ∈ R, g ∈ D(R2)

(�+ m2)ψ + λga sin(aψ) = 0

L =
1

2
∂µψ∂

µψ − 1

2
m2ψ2 − λg cos(aψ)

Finite ultraviolet regime: a2 < 4π/h̄
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pAQFT framework

2-step approach

1. construction of an algebra of observablesA
• dynamics
• causality
• CCR/CAR ...

2. state: positive, normalized, linear functional ω : A → C
→ Expectations

Quantization? → Deformation of the algebraic structure
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Functional-based approach

A : functionals on the space of field configurations E(R2)

Φf (ϕ) =

∫
R2

f (t, x)ϕ(t, x) dtdx, ∀f ∈ D(R2), ϕ ∈ E(R2)

Φ2
f (ϕ) =

∫
R2

f (t, x)ϕ2(t, x) dtdx

The theory goes quantum by switching to deformed products

F ?h̄K G :=M◦ eDh̄K (F ⊗G)

Dh̄K :=

〈
h̄K , δ

δϕ
⊗ δ

δϕ

〉
=

∫
R2

dxdy h̄K(x, y) δ

δϕ(x)
⊗ δ

δϕ(y)
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Functional-based approach

Examples:

• ∆ = ∆R −∆A causal propagator→ CCR
• ω = i

2∆+ H Hadamard parametrix→Wick-ordered observables
• ∆F Feynman propagator→ time ordering

Issues:

1. Singular structure of the kernel = clash with the one of functional
derivatives of the observables

2. eDh̄K yields a formal power series in h̄
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Interacting theory �

• S-matrix

S(λV ) := exp?h̄∆F

(
i
h̄
λV
)

:=
∑
n≥0

1

n!

(
i
h̄
λ

)
V ?h̄∆F . . . ?h̄∆F V︸ ︷︷ ︸

n

Vg :=
Va,g + V−a,g

2
, Va,f (ϕ) :=

∫
R2

dx f (x)eiaϕ(x)

• Bogoliubov map: interacting version of F ∈ F((R2)⊗m)

RλV (F) =
∑
n≥0

λn

n!
Rn,m(V⊗n,F),

where Rn,m(V⊗n,F) involves∆F and∆AF
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Algebraic/microlocal approach to SPDEs

Idea: singular SPDEs as nonlinear QFTs

state ω ←→ Covariance of the random field

∆u = λu3 + ξ

ξ spacetime white noise: a Gaussian random distribution with

E[ξ(f )] = 0, E[ξ(f )ξ(h)] = 〈f , h〉L2 , f , h ∈ D(Td)

−→ perturbation of the linear equation

∆u0 = ξ
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Algebraic/microlocal approach to SPDEs

G ∈ D′(Td × Td) fundamental solution

u0 = G ∗ ξ

E[u0(f )u0(g)] =
∫
(Td)2

(∫
Td

G(z̄, z)G(z̄, z ′) dz̄
)

f (z)g(z ′) dzdz ′ = Q(f , g)

Perturbative study of the solution

uJλK =
∞∑

n=0

λnun u0 = G ∗ ξ = u1 = G ∗ (G ∗ ξ)3 =

un =
∑

k1+k2+k3=n−1

G ∗ (uk1uk2uk3)
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Algebra of observables1,2 �

Inspired by Algebraic Quantum Field Theory

1. Promote the random field u0 = G ∗ ξ to a functional-valued
distribution Φ defined via

Φf (ϕ) =

∫
R2

dtdx f (t, x)ϕ(t, x), ∀f ∈ D(Td), ϕ ∈ E(Td)

2. algebra of observables: polynomial (multi)local functionals +
condition on the wavefront set

1C. Dappiaggi, N. Drago, P. Rinaldi, L. Zambotti, CCM (2022).
2A. B., C. Dappiaggi, P. Rinaldi, AHP (2023)
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Deformation of the algebra structure

Functionals don’t know about the stochastic nature of the problem
⇒ deformation of the tensor product

DQ(F)(f ;ϕ) :=
〈

Q, δ

δϕ1
⊗ δ

δϕ2
F(f ;ϕ)

〉
F ∈ T (PLoc)

ΓQ(F) = eDQ(F)

ΓQ(F1 ⊗ F2) = ΓQ(F1) ?Q ΓQ(F2) Algebra endomorphism

Remark These are formal expressions. One should either regularize
G or perform a renormalization procedure (Epstein-Glaser)

An interactive field theory approach to the stochastic sine-Gordon model 12 / 25
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Expectation values

The deformation map allows to compute expectation values of
polynomial expressions in the random distribution u0:

E[P(u0)(f )] = ΓQ(P(Φ))(f ; 0)

Example

ΓQ(Φ
2)(f , 0) = Q(f δDiag2) ≡ E[u2

0(f )]

ΓQ(Φ
2) = +

An interactive field theory approach to the stochastic sine-Gordon model 13 / 25
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Renormalization

Q ∼ G2 ill-defined product of distributions

Theorem
The Fourier transform of a compactly supported smooth function is
rapidly decreasing.

Wavefront set: singular points as well as singular directions
→ products of distributions, composition...

Scaling degree: local behaviour
→ extension over the singular support (renormalization)
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Back to stochastic sine-Gordon

Recent results3 on convergence in the AQFT framework
⇒ we adapted them to our setting

(�+ m2)u + λga sin(au) = χξ

• Algebra of functionals (FV ⊂ Fµc, ?h̄K , ∗)⊃ exponentials of the field

Standard approach: classical Möller map + action of ΓQ to get
expectation values

3D. Bahns, N. Pinamonti, K. Rejzner, JMAA (2021)
An interactive field theory approach to the stochastic sine-Gordon model 15 / 25
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Strategy4 �

→ Cannot address the question on convergence of the perturbative series
defining the expectation values.

We divide our approach in two steps:

1. stochastic information within the quantum theory
2. recovering expectations via classical limit

ΓQ[rλVg(ϕ)]|ϕ=0 = lim
h̄→0+

ΓQ[RλVg(ϕ)]|ϕ=0

4A. B., C. Dappiaggi, P. Rinaldi, Arxiv (2023)
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Interplay between quantum and stochastic �

F ∈ Floc(R2) → RλVg(F) = S(λVg)
?h̄ω−1 ?h̄ω (S(λVg) ?h̄∆F F)

ΓQ[RλVg(F)] = ΓQ[S(λVg)
?h̄ω−1] ?h̄ω+Q

[
ΓQ[S(λVg)] ?h̄∆F+Q ΓQ[F ]

]
We introduce the so called Q − S matrix

ΓQ[S(λVg)] =
∑
n≥0

1

n!

(
iλ
2h̄

)n n∑
k=0

(
n
k

)
T h̄∆F+Q

[
ΓQ[Va,g]

⊗k ⊗ ΓQ[V−a,g]
⊗n−k

]
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Interplay between quantum and stochastic �

ΓQ(V±a,g) = . . . =

∫
R2

dx g(x)e−
a2
2

Q(x,x)e±iaϕ(x) := V±a,gQ

gQ(x) := g(x)e−
a2
2

Q(x,x) ∈ D(R2)

⇒ ΓQ simply modifies the localization

∣∣[ΓQ[S(λVg)]]n
∣∣ ≤ 1

n!

(
λ

h̄

)n
ev0[T h̄H+Q

n (Vg⊗. . .⊗Vg)], H = Re(∆F)

Remark H and Q are symmetric⇒ we switch to a commutative algebra
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Convergence of the Q-S matrix

• Conditioning and inverse conditioning (Euclidean QFT5):
controlling the massive theory via the massless one

Remark
to obtain positivity, one has to restrict to
spacetime diamonds

Dµ := {(t, x) ∈ R2 | −µ < t−x < µ, −µ < t+x < µ} ⇒ supp(g) ⊆ Dµ

• Cauchy determinant: specific form of the propagators in 1 + 1
dimensions

5J. Frölich, CMP (1976)
An interactive field theory approach to the stochastic sine-Gordon model 19 / 25
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Convergence of the Q-S matrix

Theorem

Setting α := a2h̄
4π and for 0 < α < 1, there exist positive constants

C̃ , CQ(µ) and K such that

∣∣[ΓQ[S(λVg)]]n
∣∣ ≤ 2(2µ)nα(CQ)

n2

(n!)1−1/p

(
2λe2−1a2K

h̄

)n

||g||Lq Cn/p,

for p ∈ [1, α−1), 1p + 1
q = 1 .

As a corollary, the series ΓQ[S(λVg)](ϕ) =
∑

n≥0[ΓQ[S(λVg)]]n is
absolutely convergent for all ϕ ∈ E(R2)

An interactive field theory approach to the stochastic sine-Gordon model 20 / 25
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Other convergence results

• Stochastic interacting field

ΓQ[ΦI ,f ] := ΓQ[RλVg(Φf )]

• n-point functions
ΓQ[RλVg(Φf1 . . .Φfn)]

In both cases we get absolute convergence of the power series in λ as a
generalization of the Q − S matrix case

An interactive field theory approach to the stochastic sine-Gordon model 21 / 25
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Classical limit h̄ → 0+

We must get rid of the quantum side

For limh̄→0+ RλVg(F) to exist, the argument must not contain negative
powers of h̄.

⇒ combining it with absolute convergence of the series ensures existence
of the non-perturbative momenta of the solution

An interactive field theory approach to the stochastic sine-Gordon model 22 / 25
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Classical limit h̄ → 0+

Via combinatorial arguments we obtain that:

• all the non-vanishing contributions to Rn,m(V⊗n
g ,F) are such that

any Vg is connected with one of the entries of F .
• for any n ≥ 0,

Rn,m(V⊗n
g ,F) = O(h̄0)

Non-trivial task:
lim

h̄→0+
RλVg(F)

?
= rλVg(F)

→ we are studying the actual solution to the stochastic sine-Gordon
equation

An interactive field theory approach to the stochastic sine-Gordon model 23 / 25
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Stochastic bosonization �

Bosonization:

massless sine-Gordon model ←→ massive Thirring model

Question: does it survives at the stochastic level?

Convergence results for the SG model + algebraic approach to the
stochastic Dirac equation6

• Convergence for Dirac?
• Similar results for SHE←→ KPZ equation

6A. B., B. Costeri, C. Dappiaggi, P. Rinaldi, Arxiv (2023)
An interactive field theory approach to the stochastic sine-Gordon model 24 / 25
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If you have any questions, I would be glad to
(try to) answer them

An interactive field theory approach to the stochastic sine-Gordon model 25 / 25



Algebras of functional-valued distributions

D′(M ;Fun) space of polynomial functional-valued distributions

τ : D(M )× E(M )→ C

linear in the first component and continuous in the locally convex topology
of D(M )× E(M )

• Functional derivatives F (k) ∈ E ′(M × . . .×M︸ ︷︷ ︸
k

;D′(M ;Fun))

F (k)(f ⊗ η1 ⊗ . . .⊗ ηk ;ϕ) :=
∂k

∂s1 . . . ∂sk
F(f ;ϕ+ s1η1 + . . .+ skηk)

An interactive field theory approach to the stochastic sine-Gordon model 1 / 5



Algebras of functional-valued distributions

• Microcausal functionals: condition on the WF
−→ Analogy with the problem of Wick renormalization

D′
C (M k ;Pol) :=

{
F ∈ D′(M k ;Pol) |WF(F (n)) ⊆ Ck+n ∀n ≥ 0

}
Cn sort of Cartesian product of diagonals

A0 := E{1,Φ}, Aj := E{Aj−1 ∪G ∗ Aj−1} A := lim
−→
Aj

Algebraic structure: pointwise product [τ1τ2](f ; η) := τ1 ⊗ τ2(f δDiag2 ; η)

An interactive field theory approach to the stochastic sine-Gordon model 2 / 5



Deformations

Theorem

Let ΓQ : A → D′
C (M ;Pol) be the deformation map constructed before.

Then (A·Q := ΓQ(A), ·Q) is a unital, commutative and associative al-
gebra w.r.t. the product

τ1 ·Q τ2 := ΓQ[Γ
−1
Q τ1Γ

−1
Q τ2]

Corollary: ΓQ is an algebra homomorphism

An interactive field theory approach to the stochastic sine-Gordon model 3 / 5



Nonlocal algebra - correlations

T (A·Q) := E(M )⊕
⊕
n≥1

A⊗n
·Q , T ′

C (M ;Pol) := C⊕
⊕
n≥1

D′
C (M n,Pol)

We look for a map Γ•Q : T (A·Q)→ T ′
C (M ;Pol) implementing the

covariance of the noise
⇒ we just remove the pullback on the diagonal from ·Q .

Theorem

Given Γ•Q : T (A·Q) → T ′
C (M ;Pol), (A•Q := Γ•Q(T (A·Q)), ·Q) is a

unital, commutative and associative algebra w.r.t. the product

τ1 •Q τ2 := Γ•Q [Γ
−1
•Q
τ1 ⊗ Γ−1

•Q
τ2], τ1, τ2 ∈ A•Q

An interactive field theory approach to the stochastic sine-Gordon model 4 / 5



Renormalized ϕ4
n equation

Applying ΓQ to the mild equation we get

Ψ·Q = Φ− λG ∗ (Ψ·Q ·Q Ψ·Q ·Q Ψ·Q)

To express it in terms of pointwise products, there is a price to pay

Theorem
There exists a sequence of functional-valued linear operators {Mn}n∈N
such that
• Mn(ϕ) : E(M )→ E(M ) for all ϕ ∈ E(M ), ∀n ∈ N,
• Mn(ϕ) has an even polynomial dependence on ϕ,
• defining M :=

∑
n≥0 λ

nMn , Ψ·Q solves the equation

Ψ·Q = Φ− λG ∗Ψ3
·Q −G ∗MΨ·Q

An interactive field theory approach to the stochastic sine-Gordon model 5 / 5
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