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Overview

• Setting: Schrödinger’s equation
• Picard Iteration for Duhamel’s formula
• Discretising iterated integrals
• Limitations at Higher order
• Resonance Based Structure Preserving Schemes
• Geometric Structure
• Kernel Approximations
• Discretisation Maps
• Resonance Runge-Kutta
• Theorem for Structure Preserving Scheme



Setting

i∂tu(t, x) +L(∂x) u(t, x) = |∂x |αp (u(t, x), u(t, x))

+ |∂x |β f(u(t, x), u(t, x))W(t, x), u(0, x) = v(x),
(1)

Two important examples are

SNLSE: L= ∂2
x p = |u|2u f = uW(x, t)

Manakov System: L= ∂2
x p = |u|2u f =

3∑
i=1

σiu ◦ W(t)

Goal 1: Find temporal discretisation of the above equations in the low
regularity setting.
Goal 2: Extend these discretisation to those that preserve structure.



Duhamel Iterations

The Duhamel form of the NLSE is

u(t) = eit∆v − ieit∆
∫ t

0
e−is∆u(s) |u(s)|2 ds

− ieit∆
∫ t

0
e−is∆u(s)ΦdW(s).

(2)

• This formula can be iterated once by substituting u(s) = eis∆v.
• Again by substituting each occurring integral into every other.
• This produces a tree structure.

T1 = Π

k1
k2 k3

= −ie−itk2
∫ t

0
eisk2

eisk2
1 e−isk2

2 e−isk2
3 ds.



Duhamel Iterations

The first iteration is

u(t) = eit∆v − ieit∆
∫ t

0
e−is∆

(
eis∆v

)2
e−is∆v̄ds

− ieit∆
∫ t

0
e−is∆

(
eis∆v

)
ΦdW(s) + O(t

3
2 )

The second order iteration will include all terms that scale linearly in
time. For instance if we iterate the stochastic convolution we obtain

eit∆
∫ t

0
e−is∆

(
eis∆

∫ s

0
e−is1∆

(
eis1∆v

)
ΦdW(s1)

)
ΦdW(s) ∼ t

which is of order O(t) because dW(t) scales as
√

t.



Discretisation of Iterated Integrals

The primary challenge is to discretise the iterated integrals appearing in
the expansion of Duhamel’s Formula.∫ t

0
e−is∆

(
e−is∆v̄

)(
eis∆v

)(
eis∆v

)
ds =

∑
k=−k1+k2+k3

eikxvk1vk2vk3∫ t

0
eisP(k1,k2,k3)ds,

The resonance approach relies on our ability to solve∫ t

0
e2ik2

1 sds =
e2ik2

1 t − 1
2ik2

1
. (3)

The other part of the operator, eisP , can be discretised by Taylor
expansion of the operator eisLlow = eis(P−2k2

1)



The reason this is an improvement in terms of regularity is that the
polynomial P(k)− 2k2

1 = 2k1k2 + 2k2k3 + 2k1k3 is ’first order’. The
terms map back to physical space as follows:

k2
1 v̄k1vk2vk3 7→ (∆v̄)v2

while for the cross terms we have

k1k2v̄k1vk2vk3 7→ (∇v̄)(∇v)v.

So by eliminating the higher order terms by exact integration we have
successfully lowered th regularity we ask on the initial conditions.



Discretisation of Iterated Integrals

Considering the first stochastic integral in Duhamel’s Formula and
apply the Fourier transform to the initial data and the white noise then
we have∫ t

0
e−is∆

(
eis∆v

)
ΦdW(s) =

∑
k=k1+k2

eikxΦk2vk1

∫ t

0
eis(k2

2+2k1k2)dWk2(s).

(4)
Proceeding as in the deterministic case, we would like to solve the
integral: ∫ t

0
eisk2

2 dWk2(s). (5)

But this has no pathwise solution. As such we must Taylor expand the
entire operator, which gives,∫ t

0
eis(k2

2+2k1k2)dWk2(s) = Wk2(t)− Wk2(0) + O(t3/2k1k2
2).



Low Regularity Scheme

Theorem
A low regularity scheme for stochastic NLS with multiplicative noise (2)
of order O(t3/2) is given in Fourier space by:

Un,r
k (v, t) = e−itk2

vk −
∑

k=−k1+k2+k3

e−itk2 e2ik2
1 t − 1
2k2

1
v̄k1vk2vk3

−
∑

k=k1+k2

ie−itk2
Φk2(Wk2(t)− Wk2(0))vk1

−
∑

k=k1+k2+k3

e−itk2
∫ t

0
Φk2(Wk2(s)− Wk2(0))Φk3dWk3(s)vk1

where one has to assume v to be in H1 and that Tr
(
(∆Φ)2) < +∞ .



Limitations at Higher Order

Continuing Duhamel iterations to order O(t2) by plugging the
stochastic term into the nonlinearity gives

I =
∑

k=k1+k2−k3+k4

eikxvk1 v̄k3vk4Φk2

∫ t

0
eisP1

∫ s

0
eis1P2dWk2(s1)ds,

where P1 = 2k2
3 − 2k3(k1 + k2 + k4) + 2k1(k2 + k4) + 2k2k4 and

P2 = k2
2 + 2k1k2. We Taylor expand within the stochastic integral to

obtain∫ t

0
eisP1(k)

∫ s

0
eis1P2dWk2(s1)ds =

∫ t

0
eisP1 (Wk2(s)− Wk2(0)

+O(s3/2k1k2
2)
)

ds.



Limitations at Higher Order

To proceed as in the deterministic setting we would observe that the
only part of P1 corresponding to a second order differential operator is
2k2

3 which would lead us to consider the integral∫ t

0
e2isk2

3 (Wk2(s)− Wk2(0)) ds.

But this has no path-wise solution and we are thus forced to Taylor
expand the operator eisP1 = 1 + O(sP1), preventing us from obtaining
a low regularity approximation.



Structure Preserving Schemes

Next, we want to develop the idea of resonance schemes to obtain
preservation of structural properties of the equation. For symplectic
schemes we must consider the Stratanovich form of the SNLSE

∂tu + ∂2
x u + λ |u|2p u = κΦσ(u) ◦ ξ(x, t),

• The discretisation of the Ito form corresponds to explicit methods
• The discretisation Stratanovich form corresponds to midpoint rule.

This comes from the definition of the integrals themselves i.e.∫ t

0
H(s)dW(s) = lim

n→∞

∑
si ,si−1∈π

H(si−1)
(
Wsi − Wsi−1

)
∫ t

0
H(s) ◦ dW(s) = lim

n→∞

∑
si ,si−1∈π

(
Hsi − Hsi−1

2

)(
Wsi − Wsi−1

)



Geometric Structure: Deterministic

Consider Then The Hamiltonain equations of motion are

µ̇k =
∂H
∂νk

, ν̇k =
∂H
∂µk . (6)

• The Hamiltonian is a function H : M → R and a solution to the
Hamiltonian system is a curve

(
µk(t), νk(t)

)
in M

• The phase space M is 2n−dimensional with coordinates µk and
momenta νk for k = 1, . . . , n.

For the NLSE, the following structures are conserved:

H(u) =
∫

1
4
|∂xu|2 − λ

2p + 2
|u|p+1 ,

∫
|u|2 dx. (7)



Geometric Structure: Stochastic

For the SNLSE, the generalised Hamiltonian equations of motion with
noise are derived as follows,

µ̇ = −δH0
δν

− δH1
δν

◦ ξ(t) (8)

ν̇ =
δH0
δµ

+
δH1
δµ

◦ ξ(t) (9)

where δF [ρ, ϕ] = d
dεF [ρ+ εϕ]ε=0, the functional derivative, and,

H0(u) = −1
2

∫
|∇u|2 dx +

λ

2p + 2

∫
|u|p+1 dx

and
H1(u) =

κ

2

∫
|u| dx. (10)

Again, both the Hamiltonian and the mass are preserved.



Kernel Approximations

• Taylor expansion breaks symplectic structure
• An approximation based on polynomial interpolation can be used

instead

e−2iskk1+2isk2k3 = e−2iskk1 + e2isk2k3 − 1 +
(
e−2iskk1 − 1

) (
e2isk2k3 − 1

)
≈ e−2iskk1 + e2isk2k3 − 1 := K(s; k, k1, k2, k3).

The kernel approximation above has the important symmetry property,

K(s; k, k1, k2, k3) = K(s; k2, k3, k, k1). (11)

It’s integral can be mapped to physical space∫ s

0

[
e−2skk1 + e2isk2k3 − 1

]
ds (12)



Discretising Stochastic Integral

For a stochastic scheme we also need to discretise two stochastic
integrals

I1 =
∑
k∈Z

eikx
∑
k1,k2

Φk2uk1eit(k1+k2)

∫ t

0
ekk2+k1k2dWk2(s)

I2 =
∑
k∈Z

eikx
∑
k1,k2

Φk3Φk2uk1eit(k1+k2)

∫ t

0
eisP(k1,k2,k3)dWk2(s)dWk3(s)

In both cases we can only perform the approximations

eitP(k1,k2) ≈ 1 + O(k1k2
2 t)

eitP(k1,k2,k3) ≈ 1 + O(k1k2
2k2

3 t)



Discretisation Map

In order to construct our Scheme we must define the following maps
based on these discretisations

v 7→ F(v)

:= −iµ
∑
k∈Z

eixk
∑

k+k1=k2+k3

∫ t

0
K(s; k1, k2, k3)dsv̂k1 v̂k2 v̂k3

v 7→ P1(v) :=
1
2
∑
m∈Z

eixm
∑

a+b=m

vk1Φk2Wk2(t)

v 7→ P2(v) :=
1
4
∑
m∈Z

eixm
∑

a+b=m

vk1Φk2Φk3(Wk2(t)Wk3(t)− t)

For the maps P1,P2 to have the correct symmetry properties we
require Φ∗ = Φ and Φk = Φ−k .



Resonance Based Runge-Kutta

Using the discretisation Fwe can introduce the following scheme

un+1 = eit∂2
x un + t

∑
α∈S

bαeit∂2
x Kα,

Kα = F

(
t; cq; un + t

∑
α̃∈S

aα̃
αKα̃

)
.

which with
bα̃bα = bαaα̃

α + bα̃aα
α̃,

Conserves both the mass and the Hamiltonian.



Resonance Based Runge-Kutta

When we introduce the maps for the stochastic terms we get the
following:

un+1 = eit∂2
x un + t

∑
αi∈S

b(0)
α eit∂2

x Kα

+ t
∑
αi∈S

b(1)
α eit∂2

x Qα +
√

t
∑
αi∈S

b(2)
α eit∂2

x Lα

Kα = F(Un) , Lα = P1 (Un) ,Qα = P2 (Un)

Where

Un = un + t
∑
α̃i∈S

a(0)
α,α̃eit∂2

x Kα̃

+
√

t
∑
α̃i∈S

a(1)
α,α̃eit∂2

x Lα̃ + t
∑
α̃i∈S

a(2)
α,α̃eit∂2

x Qα̃



Structure Preservation

Theorem
For coefficients such that

b(i)
α b(j)

α̃ − b(i)
α a(j)

α,α̃ − b(j)
α̃ a(i)

α̃,α = 0, i, j = 0, 1, 2

and discretisation map such that∫
T

unF(un)dx = 0

and symmetric Hilbert-Schmidt operator Φ such that

Φk = Φ−k

the stochastic resonance Runge-Kutta scheme is symplectic.



Thank You!


