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Introduction

Motivation : Long time behaviour of the nonlinear Schrödinger equation{
i∂sU + ∂2

yU = |U|p−1U, (s, y) ∈ R× R,

U(0) = U0 ∈ L2(R).
(NLSp)

▶ Almost sure global existence results (p > 1)

▶ Almost sure scattering results (p > 3)

▶ Evolution of Gaussian measures
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On invariant measures

Definition 1
Consider a space X and one parameter group (Φ(t, .))t∈R with

Φ(t, .) : X −→ X .

A measure µ defined in the space X is called invariant with respect to
(Φ(t, .))t∈R if for any µ−measurable set A

µ
(
Φ(t,A)

)
= µ(A), t ∈ R.

Figure: Conservation of the area for the pendulum.
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On invariant measures: the Poincaré theorem

Theorem 2 (Poincaré)

Let (X ,B, µ) be a probability space and let Φ(t, .) : X −→ X be a map which
preserves the probability measure µ.

(i) Let A ∈ B be such that µ(A) > 0, then there exists k ≥ 1 such that

µ
(
A ∩ Φ(k,A)

)
> 0.

(ii) Let B ∈ B be such that µ(B) > 0, then for µ-almost all x ∈ B, the orbit(
Φ(n, x)

)
n∈N enters infinitely many times in B.
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On invariant measures: the Liouville theorem

Consider the ordinary differential equation
ẋ(t) =

dx

dt
(t) = F (x(t)),

x(0) = x0.

We denote by Φ(t, ·) the flowmap of this system.

Theorem 3 (Liouville)

The flowmap Φ(t, .) preserves the measure gdx if and only if

d∑
k=1

∂

∂xk

(
gFk

)
= 0.
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The Schrödinger equation on compact manifolds

▶ Let M a compact manifold. There exists a Hilbert basis (hn)n≥0 of L2(M),
composed of eigenfunctions of ∆M and we write

−∆Mhn = λ2
nhn for all n ≥ 0.

▶ Consider a probability space (Ω,F , p) and let (gn)n≥0 be a sequence of
independent complex standard Gaussian variables NC(0, 1).

gn =
1√
2
(g1,n + ig2,n), g1,n, g2,n ∈ NR(0, 1).

▶ Let (αn)n≥0 and define the probability measure µ via the map

ω 7−→ γ(ω) =
+∞∑
n=0

αngn(ω)hn, µ = p ◦ γ−1,

defined by : for all measurable set A,

µ(A) = p
(
ω ∈ Ω : γ(ω) ∈ A

)
.
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The Schrödinger equation on compact manifolds

Proposition 4

The measure µ is invariant under the flow of the equation

i∂sU +∆MU = 0, (s, y) ∈ R×M.

In the nonlinear case, it is then natural to look for :
▶ invariant measures : invariant Gibbs measures.

▶ quasi-invariant measures.

Proof : For all t ∈ R, the random variable

eit∆Mγ(ω) =
+∞∑
n=0

αne
−itλ2

n tgn(ω)hn

has the same distribution as γ since for all t ∈ R

e−itλ2
n tgn(ω) ∼ NC(0, 1).
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The non compact case

Proposition 5

Let σ ∈ R and consider a probability measure µ on Hσ(R). Assume that µ is
invariant under the flow Σlin of equation{

i∂sU + ∂2
yU = 0, (s, y) ∈ R× R,

U(0, ·) = U0.

Then µ = δ0.

▶ Same result for the equation

i∂sU + ∂2
yU = |U|p−1U.
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The non compact case

Proof :

▶ Let σ ∈ R and consider µ an invariant probability measure on Hσ(R). Let
χ ∈ C∞

0 (R). By invariance of the measure,∫
Hσ(R)

∥χu∥Hσ

1 + ∥u∥Hσ
dµ(u) =

∫
Hσ(R)

∥χΣlin(t)u∥Hσ

1 + ∥Σlin(t)u∥Hσ
dµ(u),

and by unitarity of the linear flow in Hσ, we get

=

∫
Hσ(R)

∥χΣlin(t)u∥Hσ

1 + ∥u∥Hσ
dµ(u). (1)

▶ Assume that the r.h.s. of (1) tends to 0 when t → +∞. This implies that
∥χu∥Hσ = 0, µ−a.s., and thus µ = δ0 since χ is arbitrary.
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The non compact case

▶ By continuity of the product by χ in Hσ and unitarity of the linear flow
in Hσ, we have

∥χΣlin(t)u∥Hσ

1 + ∥u∥Hσ
≤ C

∥Σlin(t)u∥Hσ

1 + ∥u∥Hσ
= C

∥u∥Hσ

1 + ∥u∥Hσ
≤ C .

▶ If v ∈ C∞
0 (R) is smooth, by the Leibniz rule and dispersion

∥χΣlin(t)v∥Hσ ≤ ∥χ∥Wσ,4∥Σlin(t)v∥Wσ,4 ≤ Ct−1/4∥v∥Wσ,4/3 −→ 0,

when t −→ +∞.

▶ Conclusion with an approximation argument.
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Functional analysis

▶ Define the harmonic oscillator

H = −∂2
x + x2 .

▶ There exists a Hilbert basis (en)n≥0 of L2(R), composed of eigenfunctions
of H and we write

Hen = λ2
nen = (2n + 1)en for all n ≥ 0.

▶ We define the harmonic Sobolev space Wσ,p by the norm (σ > 0)

∥u∥Wσ,p = ∥Hσ/2u∥Lp ≡ ∥(−∆)σ/2u∥Lp + ∥⟨x⟩σu∥Lp .

(Yajima-Zhang)
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The Gaussian measure: definition

▶ Let ε > 0, we define the probability Gaussian measure µ0 on H−ε(R) as the
distribution of the random variable γ

Ω −→ H−ε(R)

ω 7−→ γ(ω) =
+∞∑
n=0

1
λn

gn(ω)en,
µ0 = p ◦ γ−1.

▶ µ0 is the Gibbs measure of the equation i∂tu − Hu = 0.

▶ We denote by X 0(R) =
⋂

ε>0 H
−ε(R). Thus L2(R) ⊂ X 0(R) ⊂ H−ε(R).

▶ The measure µ0 satisfies µ0(L
2(R)) = 0 and µ0

(
X 0(R)

)
= 1.

▶ The support of µ0 is actually smoother

µ0
({

u0 ∈ X 0(R) : ∥e−itHu0∥L∞((−π,π);W1/6−,∞) ≥ R
})

≤ Ce−cR2
.
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Equivalence of Gaussian measures

▶ We say that µ≪ ν if ν(A) = 0 =⇒ µ(A) = 0.

▶ Consider αn, βn > 0 and the measures µ = p ◦ γ−1 and ν = p ◦ ψ−1 with

γ(ω) =
+∞∑
n=0

1
αn

gn(ω)en, ψ(ω) =
+∞∑
n=0

1
βn

gn(ω)en.

Then the measures µ and ν are absolutely continuous with respect to each
other (same zero measure sets) if and only if

+∞∑
n=0

(
αn

βn
− 1)2 < +∞ (Kakutani).

▶ If the measures µ and ν are not absolutely continuous with respect to each
other, they are mutually singular (Hajek-Feldman theorem).
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The global existence result

Consider {
i∂sU + ∂2

yU = |U|p−1U, (s, y) ∈ R× R,

U(0) = U0 ∈ X 0(R).
(NLSp)

Theorem 6
Let p > 1.

▶ For µ0−almost every initial data U0 ∈ X 0(R), there exists a unique, global in
time, solution U = Ψ(s, 0)U0 to (NLSp).

▶ The measures Ψ(s, 0)#µ0 and Ψlin(s, 0)#µ0 are equivalent:

Ψlin(s, 0)#µ0 ≪ Ψ(s, 0)#µ0 ≪ Ψlin(s, 0)#µ0.

▶ For all s ′ ̸= s, the measures Ψ(s, 0)#µ0 and Ψ(s ′, 0)#µ0 are mutually
singular.
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The scattering result

Theorem 7
▶ Assume that p > 1. Then for µ0−almost every initial data U0 ∈ X 0(R),
there exists a constant C > 0 such that for all s ∈ R

∥Ψ(s, 0)U0∥Lp+1(R) ≤


C (1+log⟨s⟩)1/(p+1)

⟨s⟩
1
2 − 1

p+1
if 1 < p < 5

C

⟨s⟩
1
2 − 1

p+1
if p ≥ 5.

▶ Assume now that p > 3. Then there exist η > 0 and W± ∈ L2(R) such that
for all s ∈ R

∥Ψ(s, 0)U0 − e is∂
2
y (U0 +W±)∥L2(R) ≤ C⟨s⟩−η.

▶ For all φ ∈ C∞
0 (R) we have the dispersion bound

∥eis∂
2
y φ∥Lp+1(R) ≤

C

|s|
1
2− 1

p+1
∥φ∥

L(p+1)′ (R), s ̸= 0,

therefore, the power decay in s is optimal.
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Some references

Gross-Pitaevskii equation with random initial conditions and Gibbs measures

▶ Thomann 2009
▶ Burq–Thomann–Tzvetkov 2013
▶ Deng 2012
▶ Poiret–Robert–Thomann 2014
▶ Burq-Thomann 2023
▶ Latocca 2022
▶ Robert-Seong-Tolomeo-Wang 2023
▶ Dinh-Rougerie 2023
▶ Dinh-Rougerie-Tolomeo-Wang 2023

Gross-Pitaevskii equation with noise

▶ de Bouard–Debussche–Fukuizumi 2018, 2021 & 2022
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Some references

Deterministic scattering results for NLS

▶ Barab 1984 −→ never scattering when p ≤ 3
▶ Tsutumi–Yajima 1984 −→ scattering in L2 with H1 data
▶ Nakanishi 1999 −→ scattering in Hσ

▶ Dodson 2016 −→ scattering in L2 when p = 5

Probabilistic scattering results for NLS

▶ Burq–Thomann–Tzvetkov 2013 −→ case d = 1 and p ≥ 5
▶ Poiret–Robert–Thomann 2014 −→ case d ≥ 2 and p ≥ 3
▶ Killip–Murphy–Visan 2019 −→ case d = 4 in the radial setting
▶ Latocca 2022 −→ case d ≥ 2 in the radial setting
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Some references

Quasi-invariance for NLS and dispersive PDEs

▶ Tzvetkov 2015
▶ Oh-Tsutsumi-Tzvetkov 2019
▶ Oh–Tzvetkov 2017 & 2020
▶ Planchon–Tzvetkov–Visciglia 2020
▶ Debussche-Tsutsumi 2021
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The lens transform: compactification in time and space

{
i∂sU + ∂2

yU = |U|p−1U, (s, y) ∈ R× R,
U(0) = U0.

(NLSp)

If U(s, y) is a solution of the problem (NLSp), then the function u(t, x) defined
for |t| < π

4 and x ∈ R by

u(t, x) = L (U)(t, x) :=
1

cos
1
2 (2t)

U
( tan(2t)

2
,

x

cos(2t)
)
e−

ix2tan(2t)
2

solves the problemi∂tu − Hu = cos
p−5
2 (2t)|u|p−1u, |t| < π

4
, x ∈ R,

u(0, ·) = U0.
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Introduction

We consider the equationi∂tu − Hu = cos
p−5
2 (2t)|u|p−1u, (t, x) ∈ (−π

4
,
π

4
)× R,

u(0) = u0.

▶ The energy

E(t, u(t)) = 1
2
∥
√
H u(t)∥2

L2(R) +
cos

p−5
2 (2t)

p + 1
∥u(t)∥p+1

Lp+1(R) ,

is not conserved.

▶ For −π
4 < t < π

4 , we define the measure

dνt = e−E(t,u)dudu

= e
− cos

p−5
2 (2t)
p+1 ∥u∥p+1

Lp+1(R)dµ0

which is not invariant.
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Monotonicity of the measure νt

We define the measure

dνt = e
− cos

p−5
2 (2t)
p+1 ∥u∥p+1

Lp+1(R)dµ0, −π
4
< t <

π

4
.

Proposition 8

For all 0 ≤ |t| < π
4

ν0(A) ≤


[
νt
(
Φ(t, 0)A

)](cos(2t)) 5−p
2

if 1 ≤ p ≤ 5

νt
(
Φ(t, 0)A

)
if p ≥ 5.

▶ Allows to extend the globalisation argument of Bourgain relying on invariant
measures.

▶ See the link with the Radon-Nikodym theorem.
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A quantitative Radon-Nikodym theorem

Proposition 8

Let µ, ν be two finite measures on a measurable space (X , T ). Assume that

µ≪ ν,

and more precisely

∃ 0 < α ≤ 1, ∃C > 0, ∀A ∈ T , µ(A) ≤ Cν(A)α.

By the Radon-Nikodym theorem, there exists a f ∈ L1(dν) with f ≥ 0, such

that dµ = fdν, and we write f =
dµ

dν
.

(i) The assertion (2) is satisfied with 0 < α < 1 iff f ∈ Lp
w (dν) ∩ L1(dν) with

p = 1
1−α

. In other words, f ∈ L1(dν) and

ν
({

x : |f (x)| ≥ λ
})

≤ C ′⟨λ⟩−p, ∀λ > 0.

(ii) The assertion (2) is satisfied with α = 1 iff f ∈ L∞(dν) ∩ L1(dν).
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Monotonicity of the measure νt : proof

Proof :

▶ Set

E(t, u(t)) = 1
2
∥
√
H u(t)∥2

L2(R) +
cos

p−5
2 (2t)

p + 1
∥u(t)∥p+1

Lp+1(R) .

A direct computation shows that

d

dt

(
E(t, u(t))

)
=

(5 − p) sin(2t) cos
p−7
2 (2t)

p + 1
∥u(t)∥p+1

Lp+1(R) .

▶ Set F (t) = νt
(
Φ(t, 0)A

)
. Then

d

dt
F (t) = (p − 5) tan(2t)

∫
A

α
(
t, u(t)

)
e−E(t,u(t))du0,

where α(t, u) = cos
p−5
2 (2t)
p+1 ∥u∥p+1

Lp+1(R)..

▶ See also Ammari-Farhat-Sohinger
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p+1 ∥u∥p+1

Lp+1(R).
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Monotonicity of the measure νt : proof

▶ By Hölder, for all k ≥ 1

d

dt
F (t) ≤ (p − 5) tan(2t)

k

e

(
F (t)

)1− 1
k .

▶ Optimisation with k = − log
(
F (t)

)
yields

d

dt
F (t) ≤ −(p − 5) tan(2t) log

(
F (t)

)
F (t).

▶ Integration of the differential inequality
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The Bourgain argument revisited

i∂tu − Hu = cos
p−5
2 (2t)|u|p−1u, (t, x) ∈ (−π

4
,
π

4
)× R,

u|t=t0 = u0 ∈ X 0(R).

▶ There exists a flow Φ such that the time of existence τ on the ball

BR =
{
u ∈ X 0(R) : ∥u∥ ≤ R1/2 },

is uniform and such that τ ∼ R−κ for some κ > 0.

▶ Moreover, for all |t| ≤ τ

Φ(t, 0)
(
BR

)
⊂

{
u ∈ X 0(R) : ∥u∥ ≤ (R + 1)1/2 }.

▶ We have the large deviation estimate µ0(X
0(R)\BR) ≤ Ce−cR .
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The Bourgain argument revisited

▶ For T ≤ ecR/2 fixed, we define the set of the good data

ΣR =

[T/τ ]⋂
k=−[T/τ ]

Φ(kτ, 0)−1(BR

)
.

▶ By the monotonicity of νt
(
Φ(t, 0)A

)
:

ν0(X
0(R)\ΣR) ≤

[T/τ ]∑
k=−[T/τ ]

ν0

(
Φ(kτ, 0)−1(X 0(R)\BR

))

≤
[T/τ ]∑

k=−[T/τ ]

νkτ
(
X 0(R)\BR

)
≤

(
2[T/τ ] + 1

)
µ0

(
X 0(R)\BR

)
≤ ce−cR/2

which shows that ΣR is a big set of X 0(R) when R −→ +∞.
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The Bourgain argument revisited

▶ We deduce that for all |t| ≤ T and u ∈ ΣR

∥Φ(t, 0)(u)∥ ≤ (R + 1)1/2.

In particular, for |t| = T ∼ ecR/2

∥Φ(t, 0)(u)∥ ≤ C(ln |t|+ 1)1/2,
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